Sweet cherry (Prunus avium L.) is one of the most appreciated fruits worldwide thanks to the organoleptic characteristics (i.e. taste, sweetness and colour) as well as the natural presence of nutrients, antioxidants and other healthy compounds such as i.e. flavonoids, vitamins, anthocyanins and phenolic. Italy is the fourth top world cherries producer after Turkey, United States of America, and Iran (Islam Republic of). In particular, Apulia represents the first Italian cherry production region contributing in 2017 with 32% to the annual national production. Although this fruit is important worldwide, its sector has to face continuous challenges in different fields i.e. economic, environmental and social to remain competitive on the global market. For these reasons, it is needed to search solutions (for instance introducing innovation technologies) that improve productivity, profitability and sustainability according to agricultural European rules (i.e. Common Agricultural Policy – CAP 2014-2020) that promote the innovation/internationalization of enterprise through operational funds. The research presents a case study of cherries supply chain managed by two firms situated in Apulia region (South Italy). The aim is to calculate GHG emissions of the sweet cherry, according to CF methodology based on Life Cycle Assessment (LCA) approach. The supply chain considered two phases: agriculture and processing. The former includes orchard management from nursery to harvesting and considering the entire orchard life cycle equal to 20 years; whereas the latter examines the processing of sweet cherries, from harvesting in the orchard to the collected centre where they are packaged for the fresh market. The study highlights that the GWP100 associated with the system investigated is equal to 0.798 kg CO2eq per 0.5 kg of fresh sweet cherry packed in PET clamshell. In particular, the study shown that the impacts coming from the agricultural management stage is equal to 0.656 kgCO2eq, the processing is 0.068 kgCO2eq and clamshell PET production is 0.0744 kgCO2eq.vAs regard the orchard phase, the principal impact derives from the full production where the most GWP100 impact is represented by the utilisation of the groundwater pumping station (electricity, low voltage production) for the irrigation and fertigation activities (15.6% of the total CO2eq), by the transport of manure (4.7% of the total CO2eq) and by the ploughing (3.53% of the total CO2eq). These results could contributes to provide information to stakeholders involved in the sweet cherry supply chain to promote or enhance a sweet cherry production mainly environmental sustainable.

Sustainability and innovation of the sweet cherry supply chain

ANDRIANO, ANGELA MARIUCCIA
2018

Abstract

Sweet cherry (Prunus avium L.) is one of the most appreciated fruits worldwide thanks to the organoleptic characteristics (i.e. taste, sweetness and colour) as well as the natural presence of nutrients, antioxidants and other healthy compounds such as i.e. flavonoids, vitamins, anthocyanins and phenolic. Italy is the fourth top world cherries producer after Turkey, United States of America, and Iran (Islam Republic of). In particular, Apulia represents the first Italian cherry production region contributing in 2017 with 32% to the annual national production. Although this fruit is important worldwide, its sector has to face continuous challenges in different fields i.e. economic, environmental and social to remain competitive on the global market. For these reasons, it is needed to search solutions (for instance introducing innovation technologies) that improve productivity, profitability and sustainability according to agricultural European rules (i.e. Common Agricultural Policy – CAP 2014-2020) that promote the innovation/internationalization of enterprise through operational funds. The research presents a case study of cherries supply chain managed by two firms situated in Apulia region (South Italy). The aim is to calculate GHG emissions of the sweet cherry, according to CF methodology based on Life Cycle Assessment (LCA) approach. The supply chain considered two phases: agriculture and processing. The former includes orchard management from nursery to harvesting and considering the entire orchard life cycle equal to 20 years; whereas the latter examines the processing of sweet cherries, from harvesting in the orchard to the collected centre where they are packaged for the fresh market. The study highlights that the GWP100 associated with the system investigated is equal to 0.798 kg CO2eq per 0.5 kg of fresh sweet cherry packed in PET clamshell. In particular, the study shown that the impacts coming from the agricultural management stage is equal to 0.656 kgCO2eq, the processing is 0.068 kgCO2eq and clamshell PET production is 0.0744 kgCO2eq.vAs regard the orchard phase, the principal impact derives from the full production where the most GWP100 impact is represented by the utilisation of the groundwater pumping station (electricity, low voltage production) for the irrigation and fertigation activities (15.6% of the total CO2eq), by the transport of manure (4.7% of the total CO2eq) and by the ploughing (3.53% of the total CO2eq). These results could contributes to provide information to stakeholders involved in the sweet cherry supply chain to promote or enhance a sweet cherry production mainly environmental sustainable.
2018
Inglese
TRICASE, CATERINA
Università degli Studi di Foggia
File in questo prodotto:
File Dimensione Formato  
Andriano_Angela_M_Doctorate_Thesis_IMAEV_XXX.pdf

Open Access dal 06/05/2018

Dimensione 6.19 MB
Formato Adobe PDF
6.19 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/169493
Il codice NBN di questa tesi è URN:NBN:IT:UNIFG-169493