The aim of this thesis is to determine diagnostic performance of machine learning in differentiating between atypical cartilaginous tumor (ACT) and high-grade chondrosarcoma (CS) based on radiomic features derived from magnetic resonance imaging (MRI) and computed tomography (CT). In chapter 2, the concept of radiomics of musculoskeletal sarcomas is introduced and a systematic review on radiomic feature reproducibility and validation strategies is conducted. In chapter 3, a preliminary study is performed to investigate the performance of MRI radiomics-based machine learning in discriminating ACT from high-grade CS, using a single-center cohort, in comparison with an expert radiologist. In chapter 4, the influence of interobserver segmentation variability on the reproducibility of CT and MRI radiomic features of cartilaginous bone tumors is assessed. In chapter 5, the performance of CT radiomics-based machine learning in discriminating ACT from high-grade CS of long bones is determined and validated using independent data from a multicenter cohort, compared to an expert radiologist. In chapter 6, the performance of MRI radiomics-based machine learning in differentiating between ACT and grade II CS of long bones is determined and validated using independent data from a multicenter cohort, in comparison with an expert radiologist. Finally, in chapter 7, the main results and implications of this thesis are summarized and discussed.

RADIOMICS-BASED MACHINE LEARNING CLASSIFICATION OF BONE CHONDROSARCOMA

GITTO, SALVATORE
2022

Abstract

The aim of this thesis is to determine diagnostic performance of machine learning in differentiating between atypical cartilaginous tumor (ACT) and high-grade chondrosarcoma (CS) based on radiomic features derived from magnetic resonance imaging (MRI) and computed tomography (CT). In chapter 2, the concept of radiomics of musculoskeletal sarcomas is introduced and a systematic review on radiomic feature reproducibility and validation strategies is conducted. In chapter 3, a preliminary study is performed to investigate the performance of MRI radiomics-based machine learning in discriminating ACT from high-grade CS, using a single-center cohort, in comparison with an expert radiologist. In chapter 4, the influence of interobserver segmentation variability on the reproducibility of CT and MRI radiomic features of cartilaginous bone tumors is assessed. In chapter 5, the performance of CT radiomics-based machine learning in discriminating ACT from high-grade CS of long bones is determined and validated using independent data from a multicenter cohort, compared to an expert radiologist. In chapter 6, the performance of MRI radiomics-based machine learning in differentiating between ACT and grade II CS of long bones is determined and validated using independent data from a multicenter cohort, in comparison with an expert radiologist. Finally, in chapter 7, the main results and implications of this thesis are summarized and discussed.
16-feb-2022
Inglese
SCONFIENZA, LUCA MARIA
BERTI, EMILIO
Università degli Studi di Milano
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R12376.pdf

accesso aperto

Dimensione 9.37 MB
Formato Adobe PDF
9.37 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/170208
Il codice NBN di questa tesi è URN:NBN:IT:UNIMI-170208