The decarbonization and the climate change mitigation have become a priority for many countries and governments. One of the main tools for accomplishing these objectives is the growth of renewable generation sources in the power system, but their inclusion constitutes a great challenge for the network operation due to their high variability and their stochastic behavior. In this context, the management of the power system and microgrids can be treated as optimization problems in which the resources are operated with the aim of minimizing the cost function. This cost function and the corresponding operative restrictions depend on each specific situation, for example, on which are the power consumption requirements, how weak is the connection with the power grid, and how critical are the loads to be fed in the zone. In this sense, despite the large variety of optimization approaches, these have in common the importance of counting on a high-quality forecasting system for predicting the uncertainties of the microgrid (or network) to operate. The main existing approaches for predicting the uncertainties are deterministic and stochastic (which in many cases is also called probabilistic) forecasting. Considering the importance of forecasting systems for performing the optimization of microgrids and, in general, power networks, this doctoral thesis is focused on the design of a microgrid-oriented forecasting framework that includes a wide range of forecasting approaches, which makes possible its integration with other applications, for example, energy management optimization systems. This framework includes several deterministic and stochastic methods and is able to handle the training and selection of the models for performing the forecast according to the type of uncertainty representation that is required in each case.
La decarbonizzazione e la mitigazione del cambiamento climatico sono diventate una priorità per molti Paesi e governi. Uno dei principali strumenti per realizzare questi obiettivi è la crescita delle fonti di generazione rinnovabili nel sistema elettrico, ma la loro inclusione costituisce una grande sfida per il funzionamento della rete a causa della loro alta variabilità e il loro comportamento stocastico. In questo contesto, la gestione del sistema elettrico e delle microgrid può essere trattata come un problema di ottimizzazione in cui le risorse vengono fatte funzionare con l'obiettivo di minimizzare la funzione di costo. Questa funzione di costo e le restrizioni operative corrispondenti dipendono da ogni situazione specifica, ad esempio, da quali sono i requisiti di consumo di energia, quanto è debole la connessione con la rete elettrica e quanto sono critici i carichi da alimentare nella zona. In questo senso, nonostante la grande varietà di approcci di ottimizzazione, questi hanno in comune l'importanza di contare su un sistema di previsione di alta qualità per prevedere le incertezze della microgrid (o rete) da far funzionare. I principali approcci esistenti per prevedere le incertezze sono la previsione deterministica e stocastica (che in molti casi è anche chiamata probabilistica). Considerando l'importanza dei sistemi di previsione per eseguire l'ottimizzazione delle microgrid e, in generale, delle reti elettriche, questa tesi di dottorato si concentra sulla progettazione di un modello di lavoro di previsione orientato alla microgrid che include una vasta gamma di approcci di previsione, che rende possibile la sua integrazione con altre applicazioni, ad esempio, sistemi di ottimizzazione della gestione dell'energia. Questo modello di lavoro include diversi metodi deterministici e stocastici ed è in grado di gestire l'addestramento e la selezione dei modelli per eseguire la previsione secondo il tipo di rappresentazione dell'incertezza che è richiesto in ogni caso.
Application of Intelligent Techniques for Optimal Management of Weakly Connected Microgrids
PAREJO MATOS, ANTONIO
2022
Abstract
The decarbonization and the climate change mitigation have become a priority for many countries and governments. One of the main tools for accomplishing these objectives is the growth of renewable generation sources in the power system, but their inclusion constitutes a great challenge for the network operation due to their high variability and their stochastic behavior. In this context, the management of the power system and microgrids can be treated as optimization problems in which the resources are operated with the aim of minimizing the cost function. This cost function and the corresponding operative restrictions depend on each specific situation, for example, on which are the power consumption requirements, how weak is the connection with the power grid, and how critical are the loads to be fed in the zone. In this sense, despite the large variety of optimization approaches, these have in common the importance of counting on a high-quality forecasting system for predicting the uncertainties of the microgrid (or network) to operate. The main existing approaches for predicting the uncertainties are deterministic and stochastic (which in many cases is also called probabilistic) forecasting. Considering the importance of forecasting systems for performing the optimization of microgrids and, in general, power networks, this doctoral thesis is focused on the design of a microgrid-oriented forecasting framework that includes a wide range of forecasting approaches, which makes possible its integration with other applications, for example, energy management optimization systems. This framework includes several deterministic and stochastic methods and is able to handle the training and selection of the models for performing the forecast according to the type of uncertainty representation that is required in each case.File | Dimensione | Formato | |
---|---|---|---|
phdunige_5125825.pdf
Open Access dal 20/05/2023
Dimensione
10.17 MB
Formato
Adobe PDF
|
10.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/170325
URN:NBN:IT:UNIGE-170325