The work focuses on a particular section of the intermodal chain of freight transportation, which is the link between rail and sea transportation modes and happens in the maritime port area. Among this field, the study deals with the management of rail operations, called here rail shunting operations, that have to be performed in the port area. Two optimization problems arises in this context. The first concerns the scheduling of the rail shunting operations, here called Port Rail Shunting Scheduling Problem (PRSSP). The second deals with the re-scheduling of the same operations in case of unpredictable events, here called Port Rail Shunting Re-Scheduling Problem (PRSRP). After a literature overview on the concerning studies, we concentrate on an innovative way to use the well known space-time networks as solution approach structure for both the above mentioned problems. The innovative structure has been called operation-time-space network and is deeply analyzed in a dedicated chapter. A network flow model based on an operation-time-space network for solving PRSSP has been developed. It has been tested using random generated instances providing good results. The same model has been extended in order to solve PRSRP and it has been tested giving good results as well. Finally, the models have been used to solve the real case of a port area located in Italy in order to test the applicability of the developed models to a real context. The tests have been executed using real data and provided good results confirming the possibility to apply the proposed approach in similar real problems.

Port Rail Shunting Optimization Problems

ASTA, VERONICA
2021

Abstract

The work focuses on a particular section of the intermodal chain of freight transportation, which is the link between rail and sea transportation modes and happens in the maritime port area. Among this field, the study deals with the management of rail operations, called here rail shunting operations, that have to be performed in the port area. Two optimization problems arises in this context. The first concerns the scheduling of the rail shunting operations, here called Port Rail Shunting Scheduling Problem (PRSSP). The second deals with the re-scheduling of the same operations in case of unpredictable events, here called Port Rail Shunting Re-Scheduling Problem (PRSRP). After a literature overview on the concerning studies, we concentrate on an innovative way to use the well known space-time networks as solution approach structure for both the above mentioned problems. The innovative structure has been called operation-time-space network and is deeply analyzed in a dedicated chapter. A network flow model based on an operation-time-space network for solving PRSSP has been developed. It has been tested using random generated instances providing good results. The same model has been extended in order to solve PRSRP and it has been tested giving good results as well. Finally, the models have been used to solve the real case of a port area located in Italy in order to test the applicability of the developed models to a real context. The tests have been executed using real data and provided good results confirming the possibility to apply the proposed approach in similar real problems.
15-lug-2021
Inglese
AMBROSINO, DANIELA
FERRARI, CLAUDIO
Università degli studi di Genova
File in questo prodotto:
File Dimensione Formato  
phdunige_3776577.pdf

accesso aperto

Dimensione 5.88 MB
Formato Adobe PDF
5.88 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/170564
Il codice NBN di questa tesi è URN:NBN:IT:UNIGE-170564