Adams' inequality in its original form is nothing but the Trudinger-Moser inequality for Sobolev spaces involving higher order derivatives. In this Thesis we present Adams-type inequalities for unbounded domains in R^n and some applications to existence and multiplicity results for elliptic and biharmonic problems involving nonlinearities with exponential growth.

EXPONENTIAL-TYPE INEQUALITIES IN R^N AND APPLICATIONS TO ELLIPTIC AND BIHARMONIC EQUATIONS

SANI, FEDERICA
2012

Abstract

Adams' inequality in its original form is nothing but the Trudinger-Moser inequality for Sobolev spaces involving higher order derivatives. In this Thesis we present Adams-type inequalities for unbounded domains in R^n and some applications to existence and multiplicity results for elliptic and biharmonic problems involving nonlinearities with exponential growth.
20-feb-2012
Inglese
limiting Sobolev embeddings ; Trudinger-Moser inequalities ; inequality of D.R. Adams ; best constants ; elliptic equations ; ground state solutions ; biharmonic equations ; exponential growth ; variational methods
RUF, BERNHARD
Università degli Studi di Milano
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R08023.pdf

accesso aperto

Dimensione 873.56 kB
Formato Adobe PDF
873.56 kB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/171520
Il codice NBN di questa tesi è URN:NBN:IT:UNIMI-171520