This thesis is focused on the “defensome” response to a chemical stimulus in Anopheles stephensi, the major malaria vector in Southern Asia. Malaria is a parasitic disease caused by parasites belonging to the Plasmodium genus; five species of Plasmodium are known to be etiological agents of the disease in humans. According to the World Health Organization (WHO), malaria caused around 445 thousand deaths and 216 million cases in 2016, representing a threat to the health of populations living in endemic areas and an impediment to the development of Third World countries. Since the Fifties of the past century, eradication campaigns have been attempted to control and eradicate this disease, relying essentially on two main components: antimalaric drugs to cure infections and insecticides and repellents to prevent new cases. Unfortunately, the strong selective pressure against the parasites and the vectors (Anopheline mosquitoes) led to the insurgence, in several countries, of resistances against the major drugs and insecticides used in malaria control, threatening the health of million people and the goals posed by the WHO. To fight this phenomenon, it is necessary to understand the xenobiotic detoxification mechanisms both in the parasites and in the vectors in order to identify new targets for the development of strategies aimed to restore the effectiveness of the weapons we have nowadays. The first paper presented in this thesis focuses on the response of the whole chemical defensome in larvae of a sensitive An. stephensi strain exposed to permethrin, a pyrethroid, the most used insecticide for vector control and for crop spraying. Through a comparative transcriptomic approach, it has been possible to determine the response of enzymes and membrane transporters implied in the different detoxification phases of the so called chemical defensome. Results allowed the identification of a modulated response across time of the different defensome components and several other genes not strictly connected to detoxification, highlighting a reallocation of the depleted metabolic resources in response to the action of the insecticide. This study also confirms the involvement of ATP-binding cassette (ABC) transporters in the detoxification processes against pyrethroids in An. stephensi. To investigate whether the same transporters were involved in the response to the same insecticide, we also tested the adult stage of the vector. Results underline that two out of six of the analysed genes (ABCG4 and ABCBmember6) are up-regulated in a sex-dependent way that might contribute to the higher permethrin susceptibility of male mosquitoes if compared to females. In both these works it is evident how a particular ABC transporter belonging to the G sub-family is constantly up-regulated: the ABCG4 gene. To evaluate the importance of the ABCG4 gene in An. stephensi larvae, a post-transcriptional silencing technique called RNA interference (RNAi) has been applied. A down-regulation of the transporter through the use of specific small interfering RNA (siRNA) has been achieved, preventing the extrusion of the insecticide and inducing an increased larval mortality with low doses of siRNA. Furthermore, a RNAi systemic effect spreading to tissues beyond the gut of the larvae has been demonstrated, and also the persistence of the silencing all along the development to adults when exposed to the insecticide. To characterize the ABC transporter response against different insecticide classes, in the two last articles, An. stephensi larvae have been exposed to the temephos insecticide, organophosphate usually applied for larval control, and to an Azadirachta indica seed extract. In both cases, it was not present a differential expression of the transporters when compared to a control of non-treated larvae. Also, it was not possible to achieve a mortality increase using the insecticides in combination with verapamil, an inhibitor of the ABCs. These results highlight the wide variability in the response of these transporters in larvae of An. stephensi based on the type of insecticide administered.
Il lavoro di tesi si è focalizzato sulla risposta del defensoma ad uno stimolo chimico in Anopheles stephensi, il principale vettore malarico nel sud dell’Asia. La malaria è una malattia parassitaria che ha come agenti eziologici parassiti appartenente al genere Plasmodio, di cui cinque specie sono note per essere responsabili per la malattia nell’uomo. Secondo l’Organizzazione Mondiale della Sanità (World Health Organization, WHO) la malaria ha causato nel 2016 circa 445.000 morti e 216 milioni di casi, rappresentando una minaccia alla salute delle popolazioni che vivono in zone endemiche ed un impedimento allo sviluppo dei Paesi del Terzo Mondo. Per cercare di controllare ed eliminare la malattia, a partire dagli anni cinquanta del novecento sono state condotte diverse campagne di eradicazione basate essenzialmente su due componenti principali: la cura dell’infezione in soggetti infetti con farmaci antimalarici e la prevenzione dell’infezione tramite l’utilizzo di insetticidi e repellenti. La forte pressione selettiva contro il parassita e contro il vettore (zanzare del genere Anopheles) ha però portato in questi ultimi all’insorgenza, in diverse parti del mondo, di resistenze contro i principali farmaci e insetticidi utilizzati nel controllo della malaria, minacciando la salute di milioni di persone ed il raggiungimento degli obbiettivi posti dalla WHO. Per combattere questo fenomeno si rende necessario comprendere i meccanismi di detossificazione contro gli xenobiotici sia nel parassita che nel vettore e identificare nuovi target per lo sviluppo di strategie volte a restituire efficacia alle armi di cui disponiamo nella lotta contro questa malattia. Il primo articolo presentato in questa tesi si focalizza sulla risposta dell’intero defensoma chimico nello stadio larvale di un ceppo sensibile di An. stephensi in seguito all’esposizione ad un piretroide, la permetrina, insetticida maggiormente utilizzato nel controllo di insetti vettori e per l’irrorazione di coltivazioni. Attraverso l’utilizzo di un approccio di trascrittomica comparativa, è stato possibile determinare la risposta di enzimi e trasportatori di membrana implicati nelle diverse fasi della detossificazione facenti parte del così detto defensoma chimico. I risultati ottenuti hanno permesso di individuare una risposta modulata nel tempo dei diversi componenti del defensoma, ma anche di svariati altri geni non strettamente collegati alla detossificazione, evidenziando come l’esposizione all’insetticida induca una riallocazione delle risorse metaboliche deplete dall’azione dell’insetticida stesso. Questo studio conferma inoltre il coinvolgimento dei trasportatori ATP-binding cassette (ABC) nei processi di detossificazione dai piretroidi in An. stephensi. Si è quindi voluto investigare se questi stessi trasportatori siano implicati nella risposta al medesimo insetticida anche allo stadio adulto del vettore. I risultati evidenziano come due dei sei geni analizzati (ABCG4 e ABCBmember6) mostrino una sovraregolazione con una risposta dipendente dal sesso degli individui di appartenenza. Questa differenza legata al sesso potrebbe contribuire a spiegare la maggior sensibilità degli individui di sesso maschile rispetto a quelli di sesso femminile in seguito all’esposizione all’insetticida. In entrambi questi lavori, si evidenzia in particolare come un trasportatore ABC appartenente alla sub-famiglia G sia costantemente sovraregolato: l’ABCG4. Per valutare l’importanza del gene ABCG4 in larve di An. stephensi si è quindi deciso di utilizzare una tecnica di silenziamento post- trascrizionale chiamata RNA interference (RNAi). Con l’utilizzo di specifici small interfering RNA (siRNA) si è indotta la sottoregolazione del trasportatore che non è stato quindi in grado di svolgere il suo ruolo nell’estrusione dell’insetticida, inducendo un aumento della mortalità larvale a basse dosi di siRNA. Dopo aver verificato la presenza di un effetto sistemico della RNAi che si propaga al di là dell’intestino della larva, si è anche dimostrato che il silenziamento effettuato nella larva permane nell’adulto esposto all’insetticida. Al fine di caratterizzare la risposta dei trasportatori ABC contro diverse classi di insetticidi, negli ultimi due articoli presentati si sono esposte larve di An. stephensi all’insetticida temephos, organofosfato generalmente utilizzato per il controllo larvale, e ad un estratto di semi di Azadirachta indica. In entrambi i casi, non si è evidenziata un’espressione differenziale rispetto a larve non trattate, né si è ottenuto un aumento di mortalità somministrando, oltre agli insetticidi, anche un inibitore dei trasportatori ABC, il verapamil. Si è quindi evidenziato come, in larve di An. stephensi, la risposta di questi trasportatori di membrana sia ampiamente variabile in base al tipo di insetticida utilizzato.
INVESTIGATIONS ON THE DETOXIFICATION MECHANISMS OF THE MALARIA VECTOR ANOPHELES STEPHENSI
FERRARI, MARCO
2018
Abstract
This thesis is focused on the “defensome” response to a chemical stimulus in Anopheles stephensi, the major malaria vector in Southern Asia. Malaria is a parasitic disease caused by parasites belonging to the Plasmodium genus; five species of Plasmodium are known to be etiological agents of the disease in humans. According to the World Health Organization (WHO), malaria caused around 445 thousand deaths and 216 million cases in 2016, representing a threat to the health of populations living in endemic areas and an impediment to the development of Third World countries. Since the Fifties of the past century, eradication campaigns have been attempted to control and eradicate this disease, relying essentially on two main components: antimalaric drugs to cure infections and insecticides and repellents to prevent new cases. Unfortunately, the strong selective pressure against the parasites and the vectors (Anopheline mosquitoes) led to the insurgence, in several countries, of resistances against the major drugs and insecticides used in malaria control, threatening the health of million people and the goals posed by the WHO. To fight this phenomenon, it is necessary to understand the xenobiotic detoxification mechanisms both in the parasites and in the vectors in order to identify new targets for the development of strategies aimed to restore the effectiveness of the weapons we have nowadays. The first paper presented in this thesis focuses on the response of the whole chemical defensome in larvae of a sensitive An. stephensi strain exposed to permethrin, a pyrethroid, the most used insecticide for vector control and for crop spraying. Through a comparative transcriptomic approach, it has been possible to determine the response of enzymes and membrane transporters implied in the different detoxification phases of the so called chemical defensome. Results allowed the identification of a modulated response across time of the different defensome components and several other genes not strictly connected to detoxification, highlighting a reallocation of the depleted metabolic resources in response to the action of the insecticide. This study also confirms the involvement of ATP-binding cassette (ABC) transporters in the detoxification processes against pyrethroids in An. stephensi. To investigate whether the same transporters were involved in the response to the same insecticide, we also tested the adult stage of the vector. Results underline that two out of six of the analysed genes (ABCG4 and ABCBmember6) are up-regulated in a sex-dependent way that might contribute to the higher permethrin susceptibility of male mosquitoes if compared to females. In both these works it is evident how a particular ABC transporter belonging to the G sub-family is constantly up-regulated: the ABCG4 gene. To evaluate the importance of the ABCG4 gene in An. stephensi larvae, a post-transcriptional silencing technique called RNA interference (RNAi) has been applied. A down-regulation of the transporter through the use of specific small interfering RNA (siRNA) has been achieved, preventing the extrusion of the insecticide and inducing an increased larval mortality with low doses of siRNA. Furthermore, a RNAi systemic effect spreading to tissues beyond the gut of the larvae has been demonstrated, and also the persistence of the silencing all along the development to adults when exposed to the insecticide. To characterize the ABC transporter response against different insecticide classes, in the two last articles, An. stephensi larvae have been exposed to the temephos insecticide, organophosphate usually applied for larval control, and to an Azadirachta indica seed extract. In both cases, it was not present a differential expression of the transporters when compared to a control of non-treated larvae. Also, it was not possible to achieve a mortality increase using the insecticides in combination with verapamil, an inhibitor of the ABCs. These results highlight the wide variability in the response of these transporters in larvae of An. stephensi based on the type of insecticide administered.File | Dimensione | Formato | |
---|---|---|---|
phd_unimi_R11031.pdf
Open Access dal 16/09/2019
Dimensione
8.44 MB
Formato
Adobe PDF
|
8.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/171818
URN:NBN:IT:UNIMI-171818