Negli ultimi vent'anni l'interesse per le macchine sincrone a riluttanza è notevolmente cresciuto. Lo sviluppo e la ricerca dedicata a questi motori, supportata dai diversi vantaggi che presentano rispetto ad altri tipi di macchine, ha permesso a questa tipologia di macchina di guadagnarsi uno quota di mercato in diverse applicazioni industriali. I motori a riluttanza offrono una piu alta densità di coppia rispetto ai motori asincroni. Tuttavia, se confrontati con i motori sincroni a magneti permanenti, essi presentano una densità di coppia ed una efficenza minori. Tale decremento delle prestazioni rispetto alle macchine a magneti permanenti è tuttavia compensato dalla complessiva riduzione del costo di costruzione del rotore. In aggiunta, essi presentano una struttura rotorica piu robusta delle macchine sincrone a magneti superficiali e consentono di ottenere un piu ampio range di funzionamento a potenza costante. I principali svantaggi delle macchine sincrone a riluttanza sono il basso fattore di potenza e le elevate oscillazioni di coppia. Il primo svantaggio, correlato alla assenza di alcun sistema di eccitazione sul rotore, viene normalmente mitigato attraverso l'introduzione di magneti permanenti all'interno delle barriere di flusso. Questo tipo di configurazione prende il nome di motore a riluttanza assistita da magnete permanente. Il secondo svantaggio, ossia l'eccessivo torque ripple, è dovuto all'elevato contenuto armonico della forza magnetomotrice che interagisce con l'anisotropia rotorica. Diversi approcci sono stati proposti in letteratura allo scopo di ridurre tali oscillazioni, tra i quali: (a) lo skewing del rotore, (b) barriere rotoriche geometricamente asimmetriche rispetto all'asse interpolare, (c) barriere rotoriche asimmetriche rispetto all'asse polare, (d) equa distribuzione delle barriere lungo la periferia del rotore, e (e) l'ottimizzazione della intera geometria delle barriere. Il grande interesse suscitato negli ultimi anni è dovuto principalmente a due motivi: (i) l'aumento di costo delle terre rare, utilizzate in magneti ad elevato contenuto energetico (NdFeB e SmCo); (ii) la crescente richiesta di macchine ad alta efficienza. Pertanto, il motore a riluttanza e il motore a riluttanza assistito da magneti permanenti stanno diventando concorrenti di entrambe le macchine a magneti permanenti e macchine a asincrone in molte applicazioni. Un altro vantaggio intrinseco delle macchine sincrone a riluttanza è che non inducono tensione a vuoto, quando il rotore è fermo, conseguentemente le correnti di corto circuito e coppie frenanti che si possono creare a causa dei guasti elettrici, sono trascurabili. Per quanto concerne l'aspetto controllistico è doveroso sottolineare il crescente interesse verso le le macchine sicrone a riluttanza. Tale interesse è sostanzialmente giustificato dalla naturale propensione della stessa macchina ad essere controllata senza alcun sensore di velocità. Sebbene vi sia un grande interesse per questo tipo di macchine, ci sono pochi lavori sulla progettazione analitica del loro rotore, ad esempio su come selezionare gli angoli di fine barriera, il dimensionamento dei ponticelli di ferro ed dettagli sulla progettazione robusta nei confronti della smagnetizzazione dei magneti permanenti. Nella maggior parte dei casi la macchina riluttanza viene analizzata mediante analisi agli elementi finiti. I risultati sono precisi e utili per realizzare una geometria specifica, ma si riferiscono ad una particolare soluzione perdendo generalità. In altre parole, è difficile trovare regole generali per progettare macchine a riluttanza. Per colmare questa lacuna, questa tesi si propone di fornire un approccio analitico utile alla determinazione di una geometria preliminare del motore, come punto di partenza per un'ottimizzazione successiva. La progettazione accurata dei ponticelli di ferro del rotore e gli effetti sulla forza elettromagnetica che agisce sul rotore con diversi gradi di eccentricità sono considerati. Questo lavoro di tesi è suddiviso in quattro parti principali. Un modello analitico basato sul circuito magnetico equivalente a parametri concentrati del motore a riluttanza viene presentato e discusso nella prima parte. Questo modello studia il rendimento magnetico del motore sincrono a riluttanza concentrica. Lo stesso modello analitico è utilizzato per lo studio di differenti casi di eccentricità ed il loro impatto sulle prestazioni del motore a riluttanza. Motori a riluttanza con diversi tipi di avvolgimenti statici e diverse geometrie di rotore, simmetriche ed asimmetriche, vengono considerate. Lo stesso metodo viene applicato a motori a riluttanza con magneti permanenti e confrontata con il motore a riluttanza eccentrico. I risultati prodotti dai modelli utilizzati vensono confrontati tramie simulazioni agli elementi finiti. Inoltre, un confronto analitico tra il motore a riluttanza e motore a magneti permanenti superficiali viene condotta in diversi casi di eccentricità. La seconda parte si propone di stimare in modo più accurato le forze elettromagnetiche agenti sul rotore, considerando l'effetto delle cave di statore e la caduta di tensione magnetica dovuta alla effettiva curva B-H del lamierino ferromagnetico. Il modello analitico è indicato per macchine con e senza presenza di eccentricità. Infine, misure sperimentali vengono condotte per validare la bonta' dei modelli analitici ed agli elementi finiti. Nella terza parte, si propone un approccio analitico per la progettazione del motore a riluttanza assistito da magneti permanenti. La larghezza e lo spessore dei magneti sono scelti in modo da realizzare la densità di flusso a vuoto al trafetto desiderata e resistere alla smagnetizzazione che si possono presentare in condizioni di sovraccarico. Infine, un rapido approccio analitico e multi-obiettivo è proposto per la progettazione preliminare di motori a riluttanza e motori a riluttanza assistiti. Nella quarta parte è stata sviluppata un'interfaccia utente grafica per l'analisi del motore a riluttanza. Questa applicazione stima i potenziali scalari magnetici di statore e rotore, la densità di flusso al traferro, la coppia elettromagnetica, la forza magnetica che agisce sul rotore. I parametri di ingresso di questa applicazione sono: - dati geometrici dello statore e del rotore, - carico elettrico (kA / m), e la sua fase (grado elettrico), - il tipo di geometria del rotore, ad esempio, simmetrico o asimmetrico (Macaone), - Numero di barriere di flusso per polo del rotore, - il tipo di eccentricità o nessuna eccentricità, per esempio, il caso con rotore concentrico, - il valore di eccentricità. Perciò, l'utente può usare l'applicazione per stimare le prestazioni della macchina.

Synchronous reluctance machines: eccentricity analysis and design criteria

MAHMOUD, HANAFY MAHMOUD HANAFY
2017

Abstract

Negli ultimi vent'anni l'interesse per le macchine sincrone a riluttanza è notevolmente cresciuto. Lo sviluppo e la ricerca dedicata a questi motori, supportata dai diversi vantaggi che presentano rispetto ad altri tipi di macchine, ha permesso a questa tipologia di macchina di guadagnarsi uno quota di mercato in diverse applicazioni industriali. I motori a riluttanza offrono una piu alta densità di coppia rispetto ai motori asincroni. Tuttavia, se confrontati con i motori sincroni a magneti permanenti, essi presentano una densità di coppia ed una efficenza minori. Tale decremento delle prestazioni rispetto alle macchine a magneti permanenti è tuttavia compensato dalla complessiva riduzione del costo di costruzione del rotore. In aggiunta, essi presentano una struttura rotorica piu robusta delle macchine sincrone a magneti superficiali e consentono di ottenere un piu ampio range di funzionamento a potenza costante. I principali svantaggi delle macchine sincrone a riluttanza sono il basso fattore di potenza e le elevate oscillazioni di coppia. Il primo svantaggio, correlato alla assenza di alcun sistema di eccitazione sul rotore, viene normalmente mitigato attraverso l'introduzione di magneti permanenti all'interno delle barriere di flusso. Questo tipo di configurazione prende il nome di motore a riluttanza assistita da magnete permanente. Il secondo svantaggio, ossia l'eccessivo torque ripple, è dovuto all'elevato contenuto armonico della forza magnetomotrice che interagisce con l'anisotropia rotorica. Diversi approcci sono stati proposti in letteratura allo scopo di ridurre tali oscillazioni, tra i quali: (a) lo skewing del rotore, (b) barriere rotoriche geometricamente asimmetriche rispetto all'asse interpolare, (c) barriere rotoriche asimmetriche rispetto all'asse polare, (d) equa distribuzione delle barriere lungo la periferia del rotore, e (e) l'ottimizzazione della intera geometria delle barriere. Il grande interesse suscitato negli ultimi anni è dovuto principalmente a due motivi: (i) l'aumento di costo delle terre rare, utilizzate in magneti ad elevato contenuto energetico (NdFeB e SmCo); (ii) la crescente richiesta di macchine ad alta efficienza. Pertanto, il motore a riluttanza e il motore a riluttanza assistito da magneti permanenti stanno diventando concorrenti di entrambe le macchine a magneti permanenti e macchine a asincrone in molte applicazioni. Un altro vantaggio intrinseco delle macchine sincrone a riluttanza è che non inducono tensione a vuoto, quando il rotore è fermo, conseguentemente le correnti di corto circuito e coppie frenanti che si possono creare a causa dei guasti elettrici, sono trascurabili. Per quanto concerne l'aspetto controllistico è doveroso sottolineare il crescente interesse verso le le macchine sicrone a riluttanza. Tale interesse è sostanzialmente giustificato dalla naturale propensione della stessa macchina ad essere controllata senza alcun sensore di velocità. Sebbene vi sia un grande interesse per questo tipo di macchine, ci sono pochi lavori sulla progettazione analitica del loro rotore, ad esempio su come selezionare gli angoli di fine barriera, il dimensionamento dei ponticelli di ferro ed dettagli sulla progettazione robusta nei confronti della smagnetizzazione dei magneti permanenti. Nella maggior parte dei casi la macchina riluttanza viene analizzata mediante analisi agli elementi finiti. I risultati sono precisi e utili per realizzare una geometria specifica, ma si riferiscono ad una particolare soluzione perdendo generalità. In altre parole, è difficile trovare regole generali per progettare macchine a riluttanza. Per colmare questa lacuna, questa tesi si propone di fornire un approccio analitico utile alla determinazione di una geometria preliminare del motore, come punto di partenza per un'ottimizzazione successiva. La progettazione accurata dei ponticelli di ferro del rotore e gli effetti sulla forza elettromagnetica che agisce sul rotore con diversi gradi di eccentricità sono considerati. Questo lavoro di tesi è suddiviso in quattro parti principali. Un modello analitico basato sul circuito magnetico equivalente a parametri concentrati del motore a riluttanza viene presentato e discusso nella prima parte. Questo modello studia il rendimento magnetico del motore sincrono a riluttanza concentrica. Lo stesso modello analitico è utilizzato per lo studio di differenti casi di eccentricità ed il loro impatto sulle prestazioni del motore a riluttanza. Motori a riluttanza con diversi tipi di avvolgimenti statici e diverse geometrie di rotore, simmetriche ed asimmetriche, vengono considerate. Lo stesso metodo viene applicato a motori a riluttanza con magneti permanenti e confrontata con il motore a riluttanza eccentrico. I risultati prodotti dai modelli utilizzati vensono confrontati tramie simulazioni agli elementi finiti. Inoltre, un confronto analitico tra il motore a riluttanza e motore a magneti permanenti superficiali viene condotta in diversi casi di eccentricità. La seconda parte si propone di stimare in modo più accurato le forze elettromagnetiche agenti sul rotore, considerando l'effetto delle cave di statore e la caduta di tensione magnetica dovuta alla effettiva curva B-H del lamierino ferromagnetico. Il modello analitico è indicato per macchine con e senza presenza di eccentricità. Infine, misure sperimentali vengono condotte per validare la bonta' dei modelli analitici ed agli elementi finiti. Nella terza parte, si propone un approccio analitico per la progettazione del motore a riluttanza assistito da magneti permanenti. La larghezza e lo spessore dei magneti sono scelti in modo da realizzare la densità di flusso a vuoto al trafetto desiderata e resistere alla smagnetizzazione che si possono presentare in condizioni di sovraccarico. Infine, un rapido approccio analitico e multi-obiettivo è proposto per la progettazione preliminare di motori a riluttanza e motori a riluttanza assistiti. Nella quarta parte è stata sviluppata un'interfaccia utente grafica per l'analisi del motore a riluttanza. Questa applicazione stima i potenziali scalari magnetici di statore e rotore, la densità di flusso al traferro, la coppia elettromagnetica, la forza magnetica che agisce sul rotore. I parametri di ingresso di questa applicazione sono: - dati geometrici dello statore e del rotore, - carico elettrico (kA / m), e la sua fase (grado elettrico), - il tipo di geometria del rotore, ad esempio, simmetrico o asimmetrico (Macaone), - Numero di barriere di flusso per polo del rotore, - il tipo di eccentricità o nessuna eccentricità, per esempio, il caso con rotore concentrico, - il valore di eccentricità. Perciò, l'utente può usare l'applicazione per stimare le prestazioni della macchina.
31-gen-2017
Inglese
Synchronous reluctance machines, Permanent magnet assisted synchronous reluctance machines, Eccentricity analysis, Analytical design, Linear analytical modelling, Non linear analytical modelling. User interface application for synchronous reluctance motor performance analysis.
BIANCHI, NICOLA
COLOMBO, PAOLO
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
Mahmoud_Hanafy_thesis.pdf

accesso aperto

Dimensione 12.57 MB
Formato Adobe PDF
12.57 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/172304
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-172304