Il progetto della mia Tesi di dottorato riguarda il problema del folding di proteine ed il loro misfolding, in linea con la ricerca condotta nel laboratorio di Chimica delle Proteine dove è stato principalmente svolto lo studio. La ricerca svolta può essere divisa in due parti. Durante il primo anno di dottorato è stato studiato l’effetto del pH nella fibrillogenesi di proteine, mediante l’analisi delle caratteristiche di un peptide modello. Nel secondo e terzo anno di dottorato, è stata analizzato il complesso formato da alpha-sinucleina umana ed acidi grassi e le implicazioni di questa interazione nel processo di aggregazione della proteina. Di conseguenza, la Tesi è composta da una prima parte riguardante lo studio delle proprietà di aggregazione del peptide apoMb1-29 (Capitolo 1, 2) e di una seconda parte dedicata alla caratterizzazione dell’interazione di alpha-sinucleina con acidi grassi (Capitolo 3, 4). Molte malattie umane, definite anche misfolding diseases, derivano da una non corretta strutturazione delle proteine coinvolte. Un numero sempre maggiore di malattie, come il morbo di Alzheimer e di Parkinson, è correlato al fenomeno dell’aggregazione proteica e all’accumulo anomalo di depositi proteici in diversi tessuti e organi. Questi depositi patologici sono formati da aggregati proteici fibrillari, chiamati fibrille amiloidi. L’amiloide è un polimero proteico non-covalente, stabilizzato da struttura di tipo beta, in cui i diversi betha-strands sono lateralmente associati e formano aggregati fibrillari. Poiché anche proteine e peptidi non direttamente coinvolti in patologie sono in grado di formare fibrille amiloidi in appropriate condizioni, si ritiene che la capacità di formare fibrille sia una proprietà generica delle backbone polipeptidico (Chiti and Dobson, 2006). Comunque, la tendenza ad aggregare e la stabilità delle fibrille dipende dalla sequenza aminoacidica, quindi determinanti intrinseci, come la carica netta, l’idrofobicità, la presenza di residui aromatici e la propensione a formare struttura beta, hanno un ruolo determinante nell’amiloidogenicità di una catena polipeptidica (Pawar et al., 2005). Per comprendere l’importanza della carica netta di una proteina nel suo processo di aggregazione e per analizzare gli effetti dell’interazione elettrostatica nella stabilità delle risultanti fibrille, le proprietà di aggregazione di un peptide, corrispondente al frammento 1-29 di apomioglobina da cuore di cavallo (apoMb1-29), sono state studiate in differenti condizioni di pH. Questo peptide forma velocemente fibrille amiloidi a pH acidi. Il processo a pH 2.0 segue un meccanismo di crescita nucleazione-dipendente, come determinato dall’analisi fluorimetrica mediante Tioflavina T (ThT). Osservazioni mediante microscopia elettronica (TEM) confermano la presenza di fibrille e misure di dicroismo circolare (CD) indicano l’acquisizione di un alto contenuto di struttura secondaria di tipo beta. Mediante l’uso di peptidi derivanti dalla proteolisi di apoMb1-29, è stata poi identificata la regione 7-16 come la più amiloidogenica, infatti, ha un alto grado di idrofobicità, propensione a formare beta-sheet e bassa carica netta. In conclusione, la modulazione della carica netta dei peptidi analizzati, derivante da un cambiamento del pH, è il fattore che primariamente regola formazione di aggregati fibrillari. Inoltre, è stato dimostrato che interazioni di tipo elettrostatico hanno un ruolo determinante anche nel stabilizzare la struttura beta di fibrille mature. Infatti, ThT, TEM e CD hanno evidenziato una veloce e completa disaggregazione delle fibrille, se il pH della sospensione viene portato a valori più basici. Nella seconda parte del mio progetto di dottorato, ho studiato i dettagli molecolari che regolano l’interazione tra alpha-sinucleina (alpha-syn) e acidi grassi, analizzando sia le caratteristiche conformazionali della proteina acquisite in presenza dell’acido grasso, sia lo stato fisico dello stesso lipide. Inoltre, è stato studiato il processo di aggregazione di alpha-syn mediato da acidi grassi, allo scopo di comprendere l’implicazione dei lipidi nella formazione amiloide in vivo. ?-Sinucleina è una proteina solubile di 140 aminoacidi, natively unfolded con funzione sconosciuta. Essa è altamente espressa nel sistema nervoso centrale ed è abbondante nei terminali presinaptici dei neuroni. Questa proteina è caratterizzata dalla presenza di sette ripetizioni imperfette di sequenza aminoacidica (KTKEGV) nella regione N-terminale, da una regione idrofobica centrale (NAC, non-amyloid component) e da una coda C-terminale che presenta numerosi residui acidi. La sovraespressione di ?-syn e mutazioni nel suo gene sono associati a forme precoci della sindrome di Parkinson. Inoltre, alpha-syn è il componente principale dei corpi di Lewy, accumuli citoplasmatici caratteristici del morbo di Parkinson (Spillantini et al., 1998). Il meccanismo con cui un cambiamento nella struttura e nell’espressione della proteina possa portare allo sviluppo della malattia non è ancora stato chiarito. Nonostante l’evidenza di un ruolo chiave nella patogenesi, ci sono ancora poche informazioni sulla funzione fisiologica di alpha-syn a livello neuronale. Tra le varie ipotesi, la funzione di alpha-syn è stata associata anche ad acidi grassi. alpha-Syn sembra essere in grado di interagire con acidi grassi insaturi e polinsaturi, ma non è ancora chiaro se l’interazione coinvolga molecole libere (Sharon et al., 2001), o stati aggregati (micelle, vescicole, oil droplets) di acidi grassi (Broersen et al., 2006; Lücke et al., 2006). Questa interazione modula anche l’oligomerizzazione della proteina. Infatti, studi in vitro hanno evidenziato come alpha-Syn formi multimeri in seguito all’esposizione a vescicole formate da lipidi contenenti PUFA (Perrin et al., 2001). Inoltre, in linee cellulari neuronali trattate con PUFA è stato descritto un aumento della formazione di oligomeri di alpha-syn. Queste strutture potrebbero precedere la formazione di aggregati associati alla neurodegenerazione (Sharon et al., 2003). In questo lavoro di tesi è stato effettuato in primo luogo uno studio sistematico sulle transizioni conformazionali di alpha-syn in presenza di diversi acidi grassi. Dato che il numero di insaturazioni e la lunghezza della catena acilica hanno un importante effetto sullo stato aggregativo dell’acido grasso (monomero, micella, vescicola o oil droplet) e di conseguenza anche nell’interazione con la proteina, l’analisi è stata condotta usando acidi grassi con diverse caratteristiche: acido palmitico (saturo), acido oleico (monoinsaturo) e acido docosaesaenoico (DHA, polinsaturo). Quest’ultimo è un acido grasso omega-3 abbondante a livello delle membrane neuronali. E’ stato osservato che in aree del cervello di pazienti affetti da morbo di Parkinson contenenti inclusioni di alpha-syn, si registra un aumento nel livello di DHA. Gli effetti degli acidi grassi sulla struttura di alpha-syn sono stati analizzati mediante CD e mapping proteolitico. La proteina è unfolded in assenza degli acidi grassi e in presenza di acido palmitico, mentre in seguito al legame con acido oleico e DHA, acquisisce una conformazione alpha-elicoidale mediante una semplice transizione a due stadi. In presenza di DHA, alpha-syn è abbastanza resistente alla proteolisi con proteinasi K e tripsina e il segmento 70-90 contenuto nella regione NAC è maggiormente suscettibile all’attacco proteolitico rispetto alla regione N-terminale. Probabilmente, questo segmento è flessibile ed sufficientemente esposto all’azione proteolitica, nonostante l’analisi CD dimostri la presenza di struttura alpha-elica e gli esperimenti NMR indichino che solo 40 residui del C-terminale risultano essere destrutturati e mobili in presenza di DHA. Successivamente, abbiamo osservato che alpha-syn altera il processo di auto-associazione di DHA. Lo stato fisico del lipide in presenza di alpha-syn è stato analizzato mediante misure di torbidità, dynamic light scattering (DLS), TEM e studi di fluorescenza utilizzando il pirene come sonda. DHA forma oil droplets polidisperse a pH neutro (Namani et al., 2007). alpha-Syn disgrega questi aggregati lipidici, favorendo una diversa forma di auto associazione di DHA. In presenza di alpha-syn sono necessarie concentrazioni minori di acido grasso per ottenere questa specie, caratterizzata da forma più regolare, diametro inferiore e volume idrofobico ridotto. Forme tronche di alpha-syn corrispondenti a diverse parti della catena polipeptidica (syn1-99, syn1-52, syn57-102, syn108-140) sono state utilizzate per ulteriori studi sul ruolo che ciascuna regione ha nell’interazione con il lipide. Analisi CD evidenziano come le sequenze ripetute svolgano un’importante funzione nella transizione ad alpha-elica e, di conseguenza, nell’interazione con DHA. Invece, la regione C-terminale sembra modulare la porzione di proteina che si colloca nel compartimento lipidico. Questi peptidi sono stati utilizzati anche nello studio delle proprietà aggregative di DHA. Ad eccezione di syn108-140, tutti gli altri peptidi alterano il processo di auto-associazione di DHA. Possiamo, quindi, ipotizzare che la regione N-terminale svolge un ruolo cruciale anche nel regolare il processo aggregativo di DHA. Infine, in questo lavoro di tesi si discute l’abilità del DHA, e probabilmente di altri acidi grassi polinsaturi, di indurre la formazione di oligomeri e fibrille di alpha-syn (Perrin et al., 2001; Sharon et al., 2003; Broersen et al., 2006). Gli effetti molecolari di DHA sull’aggregazione di alpha-syn sono stati analizzati mediante CD, elettroforesi su gel nativo, ThT e TEM. La presenza di DHA in un rapporto molare [DHA]/[alpha-syn] di 10, promuove l’aggregazione e la formazione di fibrille della proteina. Al contrario, condizioni saturanti di DHA inducono la formazione di sole specie oligomeriche. DHA esercita un effetto diretto sulla struttura proteica, stabilizzandone una conformazione amiloidogenica, e crea un ambiente che promuove l’aggregazione proteica.
Alpha-Synuclein and polyunsaturated fatty acids molecular characterization of the interaction and implication in protein aggregation
DE FRANCESCHI, GIORGIA
2009
Abstract
Il progetto della mia Tesi di dottorato riguarda il problema del folding di proteine ed il loro misfolding, in linea con la ricerca condotta nel laboratorio di Chimica delle Proteine dove è stato principalmente svolto lo studio. La ricerca svolta può essere divisa in due parti. Durante il primo anno di dottorato è stato studiato l’effetto del pH nella fibrillogenesi di proteine, mediante l’analisi delle caratteristiche di un peptide modello. Nel secondo e terzo anno di dottorato, è stata analizzato il complesso formato da alpha-sinucleina umana ed acidi grassi e le implicazioni di questa interazione nel processo di aggregazione della proteina. Di conseguenza, la Tesi è composta da una prima parte riguardante lo studio delle proprietà di aggregazione del peptide apoMb1-29 (Capitolo 1, 2) e di una seconda parte dedicata alla caratterizzazione dell’interazione di alpha-sinucleina con acidi grassi (Capitolo 3, 4). Molte malattie umane, definite anche misfolding diseases, derivano da una non corretta strutturazione delle proteine coinvolte. Un numero sempre maggiore di malattie, come il morbo di Alzheimer e di Parkinson, è correlato al fenomeno dell’aggregazione proteica e all’accumulo anomalo di depositi proteici in diversi tessuti e organi. Questi depositi patologici sono formati da aggregati proteici fibrillari, chiamati fibrille amiloidi. L’amiloide è un polimero proteico non-covalente, stabilizzato da struttura di tipo beta, in cui i diversi betha-strands sono lateralmente associati e formano aggregati fibrillari. Poiché anche proteine e peptidi non direttamente coinvolti in patologie sono in grado di formare fibrille amiloidi in appropriate condizioni, si ritiene che la capacità di formare fibrille sia una proprietà generica delle backbone polipeptidico (Chiti and Dobson, 2006). Comunque, la tendenza ad aggregare e la stabilità delle fibrille dipende dalla sequenza aminoacidica, quindi determinanti intrinseci, come la carica netta, l’idrofobicità, la presenza di residui aromatici e la propensione a formare struttura beta, hanno un ruolo determinante nell’amiloidogenicità di una catena polipeptidica (Pawar et al., 2005). Per comprendere l’importanza della carica netta di una proteina nel suo processo di aggregazione e per analizzare gli effetti dell’interazione elettrostatica nella stabilità delle risultanti fibrille, le proprietà di aggregazione di un peptide, corrispondente al frammento 1-29 di apomioglobina da cuore di cavallo (apoMb1-29), sono state studiate in differenti condizioni di pH. Questo peptide forma velocemente fibrille amiloidi a pH acidi. Il processo a pH 2.0 segue un meccanismo di crescita nucleazione-dipendente, come determinato dall’analisi fluorimetrica mediante Tioflavina T (ThT). Osservazioni mediante microscopia elettronica (TEM) confermano la presenza di fibrille e misure di dicroismo circolare (CD) indicano l’acquisizione di un alto contenuto di struttura secondaria di tipo beta. Mediante l’uso di peptidi derivanti dalla proteolisi di apoMb1-29, è stata poi identificata la regione 7-16 come la più amiloidogenica, infatti, ha un alto grado di idrofobicità, propensione a formare beta-sheet e bassa carica netta. In conclusione, la modulazione della carica netta dei peptidi analizzati, derivante da un cambiamento del pH, è il fattore che primariamente regola formazione di aggregati fibrillari. Inoltre, è stato dimostrato che interazioni di tipo elettrostatico hanno un ruolo determinante anche nel stabilizzare la struttura beta di fibrille mature. Infatti, ThT, TEM e CD hanno evidenziato una veloce e completa disaggregazione delle fibrille, se il pH della sospensione viene portato a valori più basici. Nella seconda parte del mio progetto di dottorato, ho studiato i dettagli molecolari che regolano l’interazione tra alpha-sinucleina (alpha-syn) e acidi grassi, analizzando sia le caratteristiche conformazionali della proteina acquisite in presenza dell’acido grasso, sia lo stato fisico dello stesso lipide. Inoltre, è stato studiato il processo di aggregazione di alpha-syn mediato da acidi grassi, allo scopo di comprendere l’implicazione dei lipidi nella formazione amiloide in vivo. ?-Sinucleina è una proteina solubile di 140 aminoacidi, natively unfolded con funzione sconosciuta. Essa è altamente espressa nel sistema nervoso centrale ed è abbondante nei terminali presinaptici dei neuroni. Questa proteina è caratterizzata dalla presenza di sette ripetizioni imperfette di sequenza aminoacidica (KTKEGV) nella regione N-terminale, da una regione idrofobica centrale (NAC, non-amyloid component) e da una coda C-terminale che presenta numerosi residui acidi. La sovraespressione di ?-syn e mutazioni nel suo gene sono associati a forme precoci della sindrome di Parkinson. Inoltre, alpha-syn è il componente principale dei corpi di Lewy, accumuli citoplasmatici caratteristici del morbo di Parkinson (Spillantini et al., 1998). Il meccanismo con cui un cambiamento nella struttura e nell’espressione della proteina possa portare allo sviluppo della malattia non è ancora stato chiarito. Nonostante l’evidenza di un ruolo chiave nella patogenesi, ci sono ancora poche informazioni sulla funzione fisiologica di alpha-syn a livello neuronale. Tra le varie ipotesi, la funzione di alpha-syn è stata associata anche ad acidi grassi. alpha-Syn sembra essere in grado di interagire con acidi grassi insaturi e polinsaturi, ma non è ancora chiaro se l’interazione coinvolga molecole libere (Sharon et al., 2001), o stati aggregati (micelle, vescicole, oil droplets) di acidi grassi (Broersen et al., 2006; Lücke et al., 2006). Questa interazione modula anche l’oligomerizzazione della proteina. Infatti, studi in vitro hanno evidenziato come alpha-Syn formi multimeri in seguito all’esposizione a vescicole formate da lipidi contenenti PUFA (Perrin et al., 2001). Inoltre, in linee cellulari neuronali trattate con PUFA è stato descritto un aumento della formazione di oligomeri di alpha-syn. Queste strutture potrebbero precedere la formazione di aggregati associati alla neurodegenerazione (Sharon et al., 2003). In questo lavoro di tesi è stato effettuato in primo luogo uno studio sistematico sulle transizioni conformazionali di alpha-syn in presenza di diversi acidi grassi. Dato che il numero di insaturazioni e la lunghezza della catena acilica hanno un importante effetto sullo stato aggregativo dell’acido grasso (monomero, micella, vescicola o oil droplet) e di conseguenza anche nell’interazione con la proteina, l’analisi è stata condotta usando acidi grassi con diverse caratteristiche: acido palmitico (saturo), acido oleico (monoinsaturo) e acido docosaesaenoico (DHA, polinsaturo). Quest’ultimo è un acido grasso omega-3 abbondante a livello delle membrane neuronali. E’ stato osservato che in aree del cervello di pazienti affetti da morbo di Parkinson contenenti inclusioni di alpha-syn, si registra un aumento nel livello di DHA. Gli effetti degli acidi grassi sulla struttura di alpha-syn sono stati analizzati mediante CD e mapping proteolitico. La proteina è unfolded in assenza degli acidi grassi e in presenza di acido palmitico, mentre in seguito al legame con acido oleico e DHA, acquisisce una conformazione alpha-elicoidale mediante una semplice transizione a due stadi. In presenza di DHA, alpha-syn è abbastanza resistente alla proteolisi con proteinasi K e tripsina e il segmento 70-90 contenuto nella regione NAC è maggiormente suscettibile all’attacco proteolitico rispetto alla regione N-terminale. Probabilmente, questo segmento è flessibile ed sufficientemente esposto all’azione proteolitica, nonostante l’analisi CD dimostri la presenza di struttura alpha-elica e gli esperimenti NMR indichino che solo 40 residui del C-terminale risultano essere destrutturati e mobili in presenza di DHA. Successivamente, abbiamo osservato che alpha-syn altera il processo di auto-associazione di DHA. Lo stato fisico del lipide in presenza di alpha-syn è stato analizzato mediante misure di torbidità, dynamic light scattering (DLS), TEM e studi di fluorescenza utilizzando il pirene come sonda. DHA forma oil droplets polidisperse a pH neutro (Namani et al., 2007). alpha-Syn disgrega questi aggregati lipidici, favorendo una diversa forma di auto associazione di DHA. In presenza di alpha-syn sono necessarie concentrazioni minori di acido grasso per ottenere questa specie, caratterizzata da forma più regolare, diametro inferiore e volume idrofobico ridotto. Forme tronche di alpha-syn corrispondenti a diverse parti della catena polipeptidica (syn1-99, syn1-52, syn57-102, syn108-140) sono state utilizzate per ulteriori studi sul ruolo che ciascuna regione ha nell’interazione con il lipide. Analisi CD evidenziano come le sequenze ripetute svolgano un’importante funzione nella transizione ad alpha-elica e, di conseguenza, nell’interazione con DHA. Invece, la regione C-terminale sembra modulare la porzione di proteina che si colloca nel compartimento lipidico. Questi peptidi sono stati utilizzati anche nello studio delle proprietà aggregative di DHA. Ad eccezione di syn108-140, tutti gli altri peptidi alterano il processo di auto-associazione di DHA. Possiamo, quindi, ipotizzare che la regione N-terminale svolge un ruolo cruciale anche nel regolare il processo aggregativo di DHA. Infine, in questo lavoro di tesi si discute l’abilità del DHA, e probabilmente di altri acidi grassi polinsaturi, di indurre la formazione di oligomeri e fibrille di alpha-syn (Perrin et al., 2001; Sharon et al., 2003; Broersen et al., 2006). Gli effetti molecolari di DHA sull’aggregazione di alpha-syn sono stati analizzati mediante CD, elettroforesi su gel nativo, ThT e TEM. La presenza di DHA in un rapporto molare [DHA]/[alpha-syn] di 10, promuove l’aggregazione e la formazione di fibrille della proteina. Al contrario, condizioni saturanti di DHA inducono la formazione di sole specie oligomeriche. DHA esercita un effetto diretto sulla struttura proteica, stabilizzandone una conformazione amiloidogenica, e crea un ambiente che promuove l’aggregazione proteica.File | Dimensione | Formato | |
---|---|---|---|
Thesis_DeFranceschi.pdf
accesso aperto
Dimensione
7.55 MB
Formato
Adobe PDF
|
7.55 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/173024
URN:NBN:IT:UNIPD-173024