Negli ultimi anni, la regressione quantile ha suscitato un notevole interesse nella letteratura statistica ed econometrica. Tale fenomeno è dovuto ai vantaggi derivanti dalla regressione quantile, in particolare, la robustezza dei risultati e la possibilità di analizzare differenti quantili di una certa variabile casuale. Tali caratteristiche sono particolarmente rilevanti nel contesto di dati economici e finanziari, data la cruciale rilevanza di eventi estremi. Innanzitutto, la tesi introduce approcci innovativi per la definizione di strategie di "asset allocation" sulla base di modelli di regressione quantile penalizzati. Come noto in letteratura, la regressione quantile minimizza il rischio estremo di portafoglio, nel momento in cui ci si focalizza sulla coda sinistra della distribuzione della variabile di risposta. Nella presente tesi si dimostra che, considerando l'intera distribuzione, è possibile ottimizzare diversi indicatori di performance e di rischiosità. In particolare, si introduce una nuova misura di performance aggiustata per il rischio, utile a valutare i portafogli finanziari in ottica pessimista. Inoltre, si dimostra che l'introduzione di una "l1-norm penalty" sui pesi dei titoli implica vantaggi non indifferenti su portafogli di notevoli dimensioni. In secondo luogo, la tesi analizza i fattori determinanti del rischio sul mercato azionario, con particolare enfasi sulle loro implicazioni previsionali. Dalla combinazione delle stime di volatilità realizzata di tipo "range-based", corrette per "noise" microstrutturali e "jumps", e modelli di regressione quantile, è possibile valutare, in ottica previsionale, l'impatto dei fattori determinanti del rischio in diversi stati del mercato e, senza assunzioni sulle innovazioni dei "realized range", ottenere le previsioni sia puntuali che sull'intera distribuzione. Inoltre, l'implementazione di una procedura a finestre mobili consente di analizzare l'evoluzione nel tempo delle relazioni tra le variabili d'interesse. Infine, l'ultimo aspetto trattato dalla tesi riguarda l'impatto dinamico dell'incertezza nel causare e prevedere la distribuzione dei rendimenti e del rischio del mercato petrolifero. L'attenzione è posta sull'impatto di due indici di tipo "news-based", recentemente elaborati, che misurano l'incertezza, rispettivamente, sulla politica economica e sui mercati azionari nel causare e prevedere le dinamiche del mercato petrolifero. A tale scopo, da un lato, la tesi esplora le relazioni di causalità nei quantili utilizzando un test non parametrico; dall'altro, la distribuzione condizionata è prevista sulla base di modelli di regressione quantile. La capacità previsionale dell'approccio adottato è valutata mediante differenti test. Data la presenza di break strutturali nel tempo, una procedura a finestre mobili è utilizzata al fine di catturare le dinamiche nei modelli proposti.
Quantile regression methods in economics and finance
BONACCOLTO, GIOVANNI
2016
Abstract
Negli ultimi anni, la regressione quantile ha suscitato un notevole interesse nella letteratura statistica ed econometrica. Tale fenomeno è dovuto ai vantaggi derivanti dalla regressione quantile, in particolare, la robustezza dei risultati e la possibilità di analizzare differenti quantili di una certa variabile casuale. Tali caratteristiche sono particolarmente rilevanti nel contesto di dati economici e finanziari, data la cruciale rilevanza di eventi estremi. Innanzitutto, la tesi introduce approcci innovativi per la definizione di strategie di "asset allocation" sulla base di modelli di regressione quantile penalizzati. Come noto in letteratura, la regressione quantile minimizza il rischio estremo di portafoglio, nel momento in cui ci si focalizza sulla coda sinistra della distribuzione della variabile di risposta. Nella presente tesi si dimostra che, considerando l'intera distribuzione, è possibile ottimizzare diversi indicatori di performance e di rischiosità. In particolare, si introduce una nuova misura di performance aggiustata per il rischio, utile a valutare i portafogli finanziari in ottica pessimista. Inoltre, si dimostra che l'introduzione di una "l1-norm penalty" sui pesi dei titoli implica vantaggi non indifferenti su portafogli di notevoli dimensioni. In secondo luogo, la tesi analizza i fattori determinanti del rischio sul mercato azionario, con particolare enfasi sulle loro implicazioni previsionali. Dalla combinazione delle stime di volatilità realizzata di tipo "range-based", corrette per "noise" microstrutturali e "jumps", e modelli di regressione quantile, è possibile valutare, in ottica previsionale, l'impatto dei fattori determinanti del rischio in diversi stati del mercato e, senza assunzioni sulle innovazioni dei "realized range", ottenere le previsioni sia puntuali che sull'intera distribuzione. Inoltre, l'implementazione di una procedura a finestre mobili consente di analizzare l'evoluzione nel tempo delle relazioni tra le variabili d'interesse. Infine, l'ultimo aspetto trattato dalla tesi riguarda l'impatto dinamico dell'incertezza nel causare e prevedere la distribuzione dei rendimenti e del rischio del mercato petrolifero. L'attenzione è posta sull'impatto di due indici di tipo "news-based", recentemente elaborati, che misurano l'incertezza, rispettivamente, sulla politica economica e sui mercati azionari nel causare e prevedere le dinamiche del mercato petrolifero. A tale scopo, da un lato, la tesi esplora le relazioni di causalità nei quantili utilizzando un test non parametrico; dall'altro, la distribuzione condizionata è prevista sulla base di modelli di regressione quantile. La capacità previsionale dell'approccio adottato è valutata mediante differenti test. Data la presenza di break strutturali nel tempo, una procedura a finestre mobili è utilizzata al fine di catturare le dinamiche nei modelli proposti.File | Dimensione | Formato | |
---|---|---|---|
bonaccolto_giovanni_tesi.pdf
accesso aperto
Dimensione
3.9 MB
Formato
Adobe PDF
|
3.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/173045
URN:NBN:IT:UNIPD-173045