Oggigiorno, nelle grandi navi la propulsione elettrica è una valida alternativa a quella meccanica. Infatti, attualmente quest'ultima è limitata solo alle navi con requisiti particolari, quali la necessità di una elevata velocità di crociera o l’uso di combustibili specifici. L'uso della propulsione elettrica, in coppia con la progressiva elettrificazione dei carichi di bordo, ha portato alla nascita del concetto di All Electric Ship (AES). Una AES è una nave in cui tutti i carichi di bordo (propulsione inclusa) sono alimentati da un unico sistema elettrico, chiamato Sistema Elettrico Integrato (Integrated Power System - IPS). L'IPS è un sistema chiave in una AES, per cui richiede una progettazione ed una gestione accurata. In effetti, in una AES tale sistema alimenta quasi tutto, mettendo in evidenza il problema di garantire sia la corretta Power Quality, sia la continuità del servizio. La progettazione di un sistema così complesso viene convenzionalmente fatta considerando i singoli componenti separatamente, per semplificare il processo. Tuttavia tale pratica può portare a prestazioni ridotte, problemi di integrazione e sovradimensionamento. Come se non bastasse, la procedura di progettazione separata influisce pesantemente sull'affidabilità del sistema, a causa della difficoltà nel valutare l'effetto sulla nave di un guasto in un singolo sottosistema. Per questi motivi è necessario un nuovo processo di progettazione in grado di considerare l'effetto di tutti i componenti e sottosistemi del sistema, consentendo così di migliorare i più importanti driver applicati nella progettazione di una nave: efficienza, efficacia, affidabilità e riduzione dei costi. Date queste premesse, l'obiettivo della ricerca era di ottenere una nuova metodologia di progettazione applicabile al sistema elettrico integrato delle AES, in grado di considerare il sistema nel suo insieme, comprese tutte le sue interdipendenze interne. Il risultato di tale ricerca è descritto in questo lavoro di tesi, e consiste in un sub-processo che dovrà essere integrato nel processo di progettazione convenzionale del sistema elettrico integrato. In questa tesi viene effettuata un'ampia rassegna dello stato dell'arte, per consentire la comprensione del contesto, del perché tale processo innovativo è necessario e quali tecniche innovative possono essere utilizzate come un aiuto nella progettazione. Ogni punto è discusso concentrandosi sullo scopo di questa tesi, presentando così argomenti, bibliografia, e valutazioni personali volte ad indirizzare il lettore a comprendere l'impatto del processo di progettazione proposto. In particolare, dopo un primo capitolo dedicato all’introduzione delle AES in cui sono descritte come tali navi si sono evolute e quali sono le applicazioni più impattanti, si effettua una discussione ragionata sul processo di progettazione convenzionale delle navi, contenuta nel secondo capitolo. In aggiunta a questo viene effettuata un'analisi approfondita del processi di progettazione dell’IPS, per spiegare il contesto in cui il processo di progettazione innovativo deve essere integrato. Alcuni esempi di problemi derivanti dal processo di progettazione tradizionale sono dati, per motivare la proposta di un processo nuovo. In aggiunta ai problemi dovuti alla progettazione, altre motivazioni portano alla necessità di un rinnovato processo di progettazione, quali l'imminente introduzione di sistemi di distribuzione innovativi a bordo nave e la recente comparsa di nuovi requisiti il cui impatto sull’IPS è significativo. Per questo, un excursus su questi due temi è fatto nel terzo capitolo, con riferimento alle più recenti fonti letterarie e ricerche. Il quarto capitolo è dedicato alla descrizione degli strumenti che verranno utilizzati per costruire l'innovativo processo di progettazione. La prima parte del capitolo è dedicata alla teoria della fidatezza (dependability), in grado di dare un approccio sistematico e coerente alla determinazione degli effetti guasti sui sistemi complessi. Attraverso la teoria della fidatezza e le sue tecniche è possibile: determinare l'effetto sul sistema dei guasti ai singoli componenti; valutare tutte le possibili cause di un dato evento di avaria; valutare alcuni indici matematici relativi al sistema, al fine di confrontare diverse soluzioni progettuali; definire dove e come il progettista deve intervenire per migliorare il sistema. La seconda parte del quarto capitolo è dedicata ai software per la simulazione del comportamento dell’IPS ed ai test hardware-in-the-loop. In particolare viene discusso l'uso di tali sistemi come aiuto nella progettazione di sistemi di potenza, per permettere di comprendere perché tali strumenti sono stati integrati nel processo di progettazione sviluppato. Il quinto capitolo è dedicato al processo di progettazione sviluppato nel corso della ricerca. Viene discusso come tale processo funziona, come dovrebbe essere integrato nel processo di progettazione convenzionale, e qual è l'impatto che esso ha sulla progettazione. In particolare, la procedura sviluppata implica sia l'applicazione delle tecniche proprie della teoria della fidatezza (in particolare la Failure Tree Analysis), sia la simulazione del comportamento dinamico dell’IPS attraverso un modello matematico del sistema tarato sui transitori elettromeccanici. Infine, per dimostrare l'applicabilità della procedura proposta, nel sesto capitolo viene analizzato un caso di studio: l'IPS di una nave da perforazione offshore oil & gas dotata di posizionamento dinamico. Questo caso di studio è stato scelto a causa dei requisiti molto stringenti di questa classe di navi, il cui impatto sul progetto dell’IPS è significativo. Viene presentata l'analisi dell’IPS tramite la tecnica di Fault Tree Analysis (anche se con un livello di dettaglio semplificato), seguita dal calcolo di diversi indici di affidabilità. Tali risultati, unitamente a norme e regolamenti vigenti, sono stati utilizzati per definire i dati di input per le simulazioni, effettuate utilizzando un modello matematico dell’IPS costruito appositamente. I risultati delle simulazioni hanno consentito di valutare come il sistema dinamicamente si porta all’avaria a partire dai guasti rilevanti, e pertanto di proporre soluzioni migliorative.

Innovative Integrated Power Systems for All Electric Ships

VICENZUTTI, ANDREA
2016

Abstract

Oggigiorno, nelle grandi navi la propulsione elettrica è una valida alternativa a quella meccanica. Infatti, attualmente quest'ultima è limitata solo alle navi con requisiti particolari, quali la necessità di una elevata velocità di crociera o l’uso di combustibili specifici. L'uso della propulsione elettrica, in coppia con la progressiva elettrificazione dei carichi di bordo, ha portato alla nascita del concetto di All Electric Ship (AES). Una AES è una nave in cui tutti i carichi di bordo (propulsione inclusa) sono alimentati da un unico sistema elettrico, chiamato Sistema Elettrico Integrato (Integrated Power System - IPS). L'IPS è un sistema chiave in una AES, per cui richiede una progettazione ed una gestione accurata. In effetti, in una AES tale sistema alimenta quasi tutto, mettendo in evidenza il problema di garantire sia la corretta Power Quality, sia la continuità del servizio. La progettazione di un sistema così complesso viene convenzionalmente fatta considerando i singoli componenti separatamente, per semplificare il processo. Tuttavia tale pratica può portare a prestazioni ridotte, problemi di integrazione e sovradimensionamento. Come se non bastasse, la procedura di progettazione separata influisce pesantemente sull'affidabilità del sistema, a causa della difficoltà nel valutare l'effetto sulla nave di un guasto in un singolo sottosistema. Per questi motivi è necessario un nuovo processo di progettazione in grado di considerare l'effetto di tutti i componenti e sottosistemi del sistema, consentendo così di migliorare i più importanti driver applicati nella progettazione di una nave: efficienza, efficacia, affidabilità e riduzione dei costi. Date queste premesse, l'obiettivo della ricerca era di ottenere una nuova metodologia di progettazione applicabile al sistema elettrico integrato delle AES, in grado di considerare il sistema nel suo insieme, comprese tutte le sue interdipendenze interne. Il risultato di tale ricerca è descritto in questo lavoro di tesi, e consiste in un sub-processo che dovrà essere integrato nel processo di progettazione convenzionale del sistema elettrico integrato. In questa tesi viene effettuata un'ampia rassegna dello stato dell'arte, per consentire la comprensione del contesto, del perché tale processo innovativo è necessario e quali tecniche innovative possono essere utilizzate come un aiuto nella progettazione. Ogni punto è discusso concentrandosi sullo scopo di questa tesi, presentando così argomenti, bibliografia, e valutazioni personali volte ad indirizzare il lettore a comprendere l'impatto del processo di progettazione proposto. In particolare, dopo un primo capitolo dedicato all’introduzione delle AES in cui sono descritte come tali navi si sono evolute e quali sono le applicazioni più impattanti, si effettua una discussione ragionata sul processo di progettazione convenzionale delle navi, contenuta nel secondo capitolo. In aggiunta a questo viene effettuata un'analisi approfondita del processi di progettazione dell’IPS, per spiegare il contesto in cui il processo di progettazione innovativo deve essere integrato. Alcuni esempi di problemi derivanti dal processo di progettazione tradizionale sono dati, per motivare la proposta di un processo nuovo. In aggiunta ai problemi dovuti alla progettazione, altre motivazioni portano alla necessità di un rinnovato processo di progettazione, quali l'imminente introduzione di sistemi di distribuzione innovativi a bordo nave e la recente comparsa di nuovi requisiti il cui impatto sull’IPS è significativo. Per questo, un excursus su questi due temi è fatto nel terzo capitolo, con riferimento alle più recenti fonti letterarie e ricerche. Il quarto capitolo è dedicato alla descrizione degli strumenti che verranno utilizzati per costruire l'innovativo processo di progettazione. La prima parte del capitolo è dedicata alla teoria della fidatezza (dependability), in grado di dare un approccio sistematico e coerente alla determinazione degli effetti guasti sui sistemi complessi. Attraverso la teoria della fidatezza e le sue tecniche è possibile: determinare l'effetto sul sistema dei guasti ai singoli componenti; valutare tutte le possibili cause di un dato evento di avaria; valutare alcuni indici matematici relativi al sistema, al fine di confrontare diverse soluzioni progettuali; definire dove e come il progettista deve intervenire per migliorare il sistema. La seconda parte del quarto capitolo è dedicata ai software per la simulazione del comportamento dell’IPS ed ai test hardware-in-the-loop. In particolare viene discusso l'uso di tali sistemi come aiuto nella progettazione di sistemi di potenza, per permettere di comprendere perché tali strumenti sono stati integrati nel processo di progettazione sviluppato. Il quinto capitolo è dedicato al processo di progettazione sviluppato nel corso della ricerca. Viene discusso come tale processo funziona, come dovrebbe essere integrato nel processo di progettazione convenzionale, e qual è l'impatto che esso ha sulla progettazione. In particolare, la procedura sviluppata implica sia l'applicazione delle tecniche proprie della teoria della fidatezza (in particolare la Failure Tree Analysis), sia la simulazione del comportamento dinamico dell’IPS attraverso un modello matematico del sistema tarato sui transitori elettromeccanici. Infine, per dimostrare l'applicabilità della procedura proposta, nel sesto capitolo viene analizzato un caso di studio: l'IPS di una nave da perforazione offshore oil & gas dotata di posizionamento dinamico. Questo caso di studio è stato scelto a causa dei requisiti molto stringenti di questa classe di navi, il cui impatto sul progetto dell’IPS è significativo. Viene presentata l'analisi dell’IPS tramite la tecnica di Fault Tree Analysis (anche se con un livello di dettaglio semplificato), seguita dal calcolo di diversi indici di affidabilità. Tali risultati, unitamente a norme e regolamenti vigenti, sono stati utilizzati per definire i dati di input per le simulazioni, effettuate utilizzando un modello matematico dell’IPS costruito appositamente. I risultati delle simulazioni hanno consentito di valutare come il sistema dinamicamente si porta all’avaria a partire dai guasti rilevanti, e pertanto di proporre soluzioni migliorative.
25-gen-2016
Inglese
Integrated Power System, Marine Power Systems, All Electric Ships, Dynamic Positioning Vessels, Ship design, Dependability, Fault Tree Analysis, Simulations, Electromechanical Transients, Design process
ROSSETTO, LUISA
Università degli studi di Padova
199
File in questo prodotto:
File Dimensione Formato  
vicenzutti_andrea_thesis.pdf

accesso aperto

Dimensione 16.23 MB
Formato Adobe PDF
16.23 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/173094
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-173094