Negli ultimi anni la sfida per la specificazione di nuove distribuzioni a priori e per l’uso di complessi modelli gerarchici è diventata ancora più rilevante all’interno dell’inferenza Bayesiana. L’avvento delle tecniche Markov Chain Monte Carlo, insieme a nuovi linguaggi di programmazione probabilistici, ha esteso i confini del campo, sia in direzione teorica che applicata. Nella presente tesi ci dedichiamo a obiettivi teorici e applicati. Nella prima parte proponiamo una nuova classe di distribuzioni a priori che dipendono dai dati e che sono specificate tramite una mistura tra una a priori non informativa e una a priori informativa. La generica distribuzione appartenente a questa nuova classe fornisce meno informazione di una priori informativa e si candida a non dominare le conclusioni inferenziali quando la dimensione campionaria è piccola o moderata. Tale distribuzione `e idonea per scopi di robustezza, specialmente in caso di scorretta specificazione della distribuzione a priori informativa. Alcuni studi di simulazione all’interno di modelli coniugati mostrano che questa proposta può essere conveniente per ridurre gli errori quadratici medi e per migliorare la copertura frequentista. Inoltre, sotto condizioni non restrittive, questa classe di distribuzioni d`a luogo ad alcune altre interessanti proprietà teoriche. Nella seconda parte della tesi usiamo la classe dei modelli gerarchici Bayesiani per prevedere alcune grandezze relative al gioco del calcio ed estendiamo l’usuale modellazione per i goal includendo nel modello un’ulteriore informazione proveniente dalle case di scommesse. Strumenti per sondare a posteriori la bontà di adattamento del modello ai dati mettono in luce un’ottima aderenza del modello ai dati in possesso, una buona calibrazione dello stesso e suggeriscono, infine, la costruzione di efficienti strategie di scommesse per dati futuri.
Developments in Bayesian Hierarchical Models and Prior Specification with Application to Analysis of Soccer Data
EGIDI, LEONARDO
2018
Abstract
Negli ultimi anni la sfida per la specificazione di nuove distribuzioni a priori e per l’uso di complessi modelli gerarchici è diventata ancora più rilevante all’interno dell’inferenza Bayesiana. L’avvento delle tecniche Markov Chain Monte Carlo, insieme a nuovi linguaggi di programmazione probabilistici, ha esteso i confini del campo, sia in direzione teorica che applicata. Nella presente tesi ci dedichiamo a obiettivi teorici e applicati. Nella prima parte proponiamo una nuova classe di distribuzioni a priori che dipendono dai dati e che sono specificate tramite una mistura tra una a priori non informativa e una a priori informativa. La generica distribuzione appartenente a questa nuova classe fornisce meno informazione di una priori informativa e si candida a non dominare le conclusioni inferenziali quando la dimensione campionaria è piccola o moderata. Tale distribuzione `e idonea per scopi di robustezza, specialmente in caso di scorretta specificazione della distribuzione a priori informativa. Alcuni studi di simulazione all’interno di modelli coniugati mostrano che questa proposta può essere conveniente per ridurre gli errori quadratici medi e per migliorare la copertura frequentista. Inoltre, sotto condizioni non restrittive, questa classe di distribuzioni d`a luogo ad alcune altre interessanti proprietà teoriche. Nella seconda parte della tesi usiamo la classe dei modelli gerarchici Bayesiani per prevedere alcune grandezze relative al gioco del calcio ed estendiamo l’usuale modellazione per i goal includendo nel modello un’ulteriore informazione proveniente dalle case di scommesse. Strumenti per sondare a posteriori la bontà di adattamento del modello ai dati mettono in luce un’ottima aderenza del modello ai dati in possesso, una buona calibrazione dello stesso e suggeriscono, infine, la costruzione di efficienti strategie di scommesse per dati futuri.File | Dimensione | Formato | |
---|---|---|---|
egidi_leonardo_tesi.pdf
accesso aperto
Dimensione
2.43 MB
Formato
Adobe PDF
|
2.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/173226
URN:NBN:IT:UNIPD-173226