L'ultimo decennio di ricerca nell'ambito dei dispositivi optoelettronici ha contribuito allo sviluppo e alla successiva introduzione sul mercato di rivoluzionarie tecnologie, sia in ambito illuminotecnico, grazie agli innovativi sistemi di illuminazione basati su LED e laser in Nitruro di Gallio, che in ambito telecomunicazioni, dove la Silicon photonics promette di stravolgere l'odierno approccio alla trasmissione a larga banda. Innumerevoli laboratori di ricerca universitari e privati concorrono nell'incrementare le performance e l'affidabilità dei dispositivi. Tale obbiettivo, tuttavia, è ostacolato dalla complessa natura dei dispositivi optoelettronici e, ancor più, dei sistemi su di essi basati. Una conoscenza approfondita dei materiali, delle proprietà dei dispositivi e dell'ottimizzazione a livello di sistema risultano essere indispensabili per l'identificazione dei meccanismi fisici che limitano il tempo di vita utile dei dispositivi, e per lo sviluppo di possibili soluzioni. Scopo di questa tesi è descrive i risultati di un'estesa analisi finalizzata ad identificare i processi fisici che limitano l'affidabilità e le prestazioni degli innovativi sistemi optoelettronici basati su semiconduttori III-V. Per tale scopo sono stati realizzati specifici esperimenti di degrado accelerato e stress a breve termine su dispositivi allo stato dell'arte, che hanno permesso di individuare i processi fisici responsabili del degrado, graduale o catastrofico, cui possono essere soggetti i moderni dispositivi optoelettronici durante la propria vita operativa. Nello specifico, le analisi condotte su LED ad emissione nel visibile basati su Nitruro di Gallio (GaN) hanno innanzitutto rivelato che la prolungata polarizzazione del dispositivo con tensioni inverse vicine al valore critico di breakdown è accompagnata dall'instaurarsi di un processo di degrado tempo-dipendente che induce l'aumento della corrente di leakage del LED, portandolo eventualmente alla failure catastrofica. La peculiare distribuzione statistica del tempo di failure, unita all'andamento temporale di corrente e segnale di elettro-luminescenza durante lo stress in inversa, sono stati interpretati supponendo che il Nitruro di Gallio, portato in svuotamento spinto dalle elevate tensioni inverse, possa comportarsi come un dielettrico con perdite che degrada nel tempo a causa della percolazione di difetti, con un processo del tutto simile al breakdown tempo-dipendente del dielettrico presente nei MOS in Silicio. Lo studio sugli effetti a breve termine di elevate correnti di polarizzazione su LED in GaN ad alta potenza ha invece evidenziato una localizzazione della failure dei dispositivi in prossimità dei principali punti di iniezione di corrente, specificatamente associabili alla particolare struttura del dispositivo in analisi. Tale tipologia di stress si è inoltre rivelata altamente dannosa anche per la struttura epitassiale del dispositivo, che, a causa delle elevate temperature e densità di corrente in gioco, ha mostrato incrementi di resistività localizzati. Una più marcata dipendenza delle modalità e delle condizioni di failure dalla struttura e dal layout superficiale è emersa dall'analisi degli effetti di eventi di overstress di breve durata su LED bianchi ad alta potenza. I risultati sperimentali hanno portato all'identificazione della tipologia di LED più adeguata da adottare in ambienti soggetti a disturbi elettrici, mostrando inoltre come le problematiche relative ad eventi di overstress elettrico siano determinate più dalle debolezze di elementi estrinseci del LED che dal chip di semiconduttore. L'attività di ricerca ha poi evidenziato come per LED bianchi a media potenza in condizioni operative limite i processi di degrado graduale delle caratteristiche ottiche ed elettriche del dispositivo, ed in particolar modo relativi al package plastico, possano risultare deleteri per l'affidabilità a lungo termine della sorgente allo stato solido. L'analisi affidabilistica su tale tipologia di LED è stata poi estesa a livello di sistema, andando ad investigare i meccanismi di degrado che interessano le comuni lampadine a bulbo basate per l'appunto su LED bianchi a media potenza. La maggiore complessità del sistema illuminante sotto stress ha impattato negativamente sulle performance a lungo termine del bulbo, la cui affidabilità è risultata essere per lo più limitata da elementi estrinseci al LED, quali la cupola diffusiva oppure il driver di corrente. Nella seconda parte di questa tesi sono state analizzate le proprietà affidabilistiche di uno di questi elementi estrinseci: i fosfori. In collaborazione con l'organizzazione per lo sviluppo delle nuove energie e delle tecnologie industriali del Giappone (NEDO), è stata condotta un'estesa ricerca sull'affidabilità di fosfori ad emissione nel blu per eccitazione nel vicino UV tramite sorgenti a stato solido, in particolare laser. Attraverso una serie di stress termici e/o sotto fascio ottico ad elevate intensità, è stato possibile identificare il principale meccanismo fisico responsabile del degrado delle performance di fotoluminescenza del materiale fosforescente in esame. Nello specifico, correlando quest'ultimo fenomeno con le variazioni delle proprietà chimico-fisiche del materiale, è stato possibile identificare nell'autoionizzazione otticamente e/o termicamente indotta dei centri otticamente attivi di Eu2+ la principale causa di degrado del fosforo. La stress ottico a breve termine su pigmento luminescente di seconda generazione ha poi permesso di identificare un valore limite di intensità per il pompaggio ottico continuo. Oltre tale soglia, le performance del materiale luminescente calano per effetto congiunto della perdita di efficienza dovuta alle alte temperature di esercizio e al degrado non reversibile del materiale stesso. Nella terza parte di questa tesi vengono analizzati i meccanismi di degrado di diodi laser IR ibridi basati su semiconduttori III-V e Silicio progettati per sistemi di telecomunicazione e di interconnessione integrati. Esperimenti di degrado accelerato condotti a corrente costante hanno permesso l'identificazione di diversi processi di degrado graduale, tra i quali: (i) l'aumento della corrente di soglia, (ii) la decrescita della tensione di turn-on del diodo (iii) e l'incremento della concentrazione di carica apparente in prossimità della regione attiva. Sulla base della correlazione tra tali processi, è stata formulata l'ipotesi secondo la quale l'origine del degrado ottico del dispositivo risieda nell'aumento del rate di ricombinazione non radiativa, possibilmente dovuto alla diffusione di difetti verso la regione attiva. Al fine di investigare l'origine della specie diffondente sono state impiegate tecniche di analisi spettroscopica che hanno permesso l'identificazione di diversi livelli trappola all'interno del dispositivo, il principale dei quali, localizzato 0.43 eV al di sopra della banda di valenza, è risultato essere compatibile con un difetto d'interfaccia caratteristico del materiale semiconduttore utilizzato per la crescita della regione attiva dei dispositivi in esame.
Reliability of III-V laser diodes and LEDs for lighting and telecommunication applications
BUFFOLO, MATTEO
2018
Abstract
L'ultimo decennio di ricerca nell'ambito dei dispositivi optoelettronici ha contribuito allo sviluppo e alla successiva introduzione sul mercato di rivoluzionarie tecnologie, sia in ambito illuminotecnico, grazie agli innovativi sistemi di illuminazione basati su LED e laser in Nitruro di Gallio, che in ambito telecomunicazioni, dove la Silicon photonics promette di stravolgere l'odierno approccio alla trasmissione a larga banda. Innumerevoli laboratori di ricerca universitari e privati concorrono nell'incrementare le performance e l'affidabilità dei dispositivi. Tale obbiettivo, tuttavia, è ostacolato dalla complessa natura dei dispositivi optoelettronici e, ancor più, dei sistemi su di essi basati. Una conoscenza approfondita dei materiali, delle proprietà dei dispositivi e dell'ottimizzazione a livello di sistema risultano essere indispensabili per l'identificazione dei meccanismi fisici che limitano il tempo di vita utile dei dispositivi, e per lo sviluppo di possibili soluzioni. Scopo di questa tesi è descrive i risultati di un'estesa analisi finalizzata ad identificare i processi fisici che limitano l'affidabilità e le prestazioni degli innovativi sistemi optoelettronici basati su semiconduttori III-V. Per tale scopo sono stati realizzati specifici esperimenti di degrado accelerato e stress a breve termine su dispositivi allo stato dell'arte, che hanno permesso di individuare i processi fisici responsabili del degrado, graduale o catastrofico, cui possono essere soggetti i moderni dispositivi optoelettronici durante la propria vita operativa. Nello specifico, le analisi condotte su LED ad emissione nel visibile basati su Nitruro di Gallio (GaN) hanno innanzitutto rivelato che la prolungata polarizzazione del dispositivo con tensioni inverse vicine al valore critico di breakdown è accompagnata dall'instaurarsi di un processo di degrado tempo-dipendente che induce l'aumento della corrente di leakage del LED, portandolo eventualmente alla failure catastrofica. La peculiare distribuzione statistica del tempo di failure, unita all'andamento temporale di corrente e segnale di elettro-luminescenza durante lo stress in inversa, sono stati interpretati supponendo che il Nitruro di Gallio, portato in svuotamento spinto dalle elevate tensioni inverse, possa comportarsi come un dielettrico con perdite che degrada nel tempo a causa della percolazione di difetti, con un processo del tutto simile al breakdown tempo-dipendente del dielettrico presente nei MOS in Silicio. Lo studio sugli effetti a breve termine di elevate correnti di polarizzazione su LED in GaN ad alta potenza ha invece evidenziato una localizzazione della failure dei dispositivi in prossimità dei principali punti di iniezione di corrente, specificatamente associabili alla particolare struttura del dispositivo in analisi. Tale tipologia di stress si è inoltre rivelata altamente dannosa anche per la struttura epitassiale del dispositivo, che, a causa delle elevate temperature e densità di corrente in gioco, ha mostrato incrementi di resistività localizzati. Una più marcata dipendenza delle modalità e delle condizioni di failure dalla struttura e dal layout superficiale è emersa dall'analisi degli effetti di eventi di overstress di breve durata su LED bianchi ad alta potenza. I risultati sperimentali hanno portato all'identificazione della tipologia di LED più adeguata da adottare in ambienti soggetti a disturbi elettrici, mostrando inoltre come le problematiche relative ad eventi di overstress elettrico siano determinate più dalle debolezze di elementi estrinseci del LED che dal chip di semiconduttore. L'attività di ricerca ha poi evidenziato come per LED bianchi a media potenza in condizioni operative limite i processi di degrado graduale delle caratteristiche ottiche ed elettriche del dispositivo, ed in particolar modo relativi al package plastico, possano risultare deleteri per l'affidabilità a lungo termine della sorgente allo stato solido. L'analisi affidabilistica su tale tipologia di LED è stata poi estesa a livello di sistema, andando ad investigare i meccanismi di degrado che interessano le comuni lampadine a bulbo basate per l'appunto su LED bianchi a media potenza. La maggiore complessità del sistema illuminante sotto stress ha impattato negativamente sulle performance a lungo termine del bulbo, la cui affidabilità è risultata essere per lo più limitata da elementi estrinseci al LED, quali la cupola diffusiva oppure il driver di corrente. Nella seconda parte di questa tesi sono state analizzate le proprietà affidabilistiche di uno di questi elementi estrinseci: i fosfori. In collaborazione con l'organizzazione per lo sviluppo delle nuove energie e delle tecnologie industriali del Giappone (NEDO), è stata condotta un'estesa ricerca sull'affidabilità di fosfori ad emissione nel blu per eccitazione nel vicino UV tramite sorgenti a stato solido, in particolare laser. Attraverso una serie di stress termici e/o sotto fascio ottico ad elevate intensità, è stato possibile identificare il principale meccanismo fisico responsabile del degrado delle performance di fotoluminescenza del materiale fosforescente in esame. Nello specifico, correlando quest'ultimo fenomeno con le variazioni delle proprietà chimico-fisiche del materiale, è stato possibile identificare nell'autoionizzazione otticamente e/o termicamente indotta dei centri otticamente attivi di Eu2+ la principale causa di degrado del fosforo. La stress ottico a breve termine su pigmento luminescente di seconda generazione ha poi permesso di identificare un valore limite di intensità per il pompaggio ottico continuo. Oltre tale soglia, le performance del materiale luminescente calano per effetto congiunto della perdita di efficienza dovuta alle alte temperature di esercizio e al degrado non reversibile del materiale stesso. Nella terza parte di questa tesi vengono analizzati i meccanismi di degrado di diodi laser IR ibridi basati su semiconduttori III-V e Silicio progettati per sistemi di telecomunicazione e di interconnessione integrati. Esperimenti di degrado accelerato condotti a corrente costante hanno permesso l'identificazione di diversi processi di degrado graduale, tra i quali: (i) l'aumento della corrente di soglia, (ii) la decrescita della tensione di turn-on del diodo (iii) e l'incremento della concentrazione di carica apparente in prossimità della regione attiva. Sulla base della correlazione tra tali processi, è stata formulata l'ipotesi secondo la quale l'origine del degrado ottico del dispositivo risieda nell'aumento del rate di ricombinazione non radiativa, possibilmente dovuto alla diffusione di difetti verso la regione attiva. Al fine di investigare l'origine della specie diffondente sono state impiegate tecniche di analisi spettroscopica che hanno permesso l'identificazione di diversi livelli trappola all'interno del dispositivo, il principale dei quali, localizzato 0.43 eV al di sopra della banda di valenza, è risultato essere compatibile con un difetto d'interfaccia caratteristico del materiale semiconduttore utilizzato per la crescita della regione attiva dei dispositivi in esame.File | Dimensione | Formato | |
---|---|---|---|
Buffolo_Matteo_tesi.pdf
accesso aperto
Dimensione
25.99 MB
Formato
Adobe PDF
|
25.99 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/173251
URN:NBN:IT:UNIPD-173251