We present a weighted estimator of the covariance and correlation in bipartite complex systems with a double layer of heterogeneity. The advantage provided by the weighted estimators lies in the fact that the unweighted sample covariance and correlation can be shown to possess a bias. Indeed, such a bias affects real bipartite systems, and, for example, we report its effects on two empirical systems, one social and the other biological. On the contrary, our newly proposed weighted estimators remove the bias and are better suited to describe such systems.

COVARIANCE AND CORRELATION ESTIMATORS IN BIPARTITE SYSTEMS

Puccio, Elena
2017

Abstract

We present a weighted estimator of the covariance and correlation in bipartite complex systems with a double layer of heterogeneity. The advantage provided by the weighted estimators lies in the fact that the unweighted sample covariance and correlation can be shown to possess a bias. Indeed, such a bias affects real bipartite systems, and, for example, we report its effects on two empirical systems, one social and the other biological. On the contrary, our newly proposed weighted estimators remove the bias and are better suited to describe such systems.
27-feb-2017
Inglese
TUMMINELLO, Michele
PALMA, Gioacchino Massimo
Università degli Studi di Palermo
Palermo
File in questo prodotto:
File Dimensione Formato  
PhD_thesis_Elena_Puccio.pdf

accesso aperto

Dimensione 4.74 MB
Formato Adobe PDF
4.74 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/173571
Il codice NBN di questa tesi è URN:NBN:IT:UNIPA-173571