Il mantenimento della postura eretta, in condizioni sia statiche che dinamiche, è un compito delicato per il Sistema Nervoso Centrale, poiché richiede la corretta integrazione ed interpretazione dei segnali provenienti dai differenti sistemi sensoriali, quali quello somato-sensoriale, visivo e vestibolare. La lesioni di uno qualunque di questi sistemi sensoriali o del Sistema Nervoso Centrale stesso provoca seri problemi nella capacità di mantenere la stabilità ed incide sulla abilità dei soggetti di controllare e coordinare correttamente i segmenti corporei, nonché di regolare opportunamente il tono muscolare. In particolare, la Paralisi Cerebrale Infantile è una patologia che si manifesta con una disorganizzazione motoria ed una rigidezza muscolare tali da rendere difficile acquisire le normali abilità necessarie per il mantenimento dell’equilibrio. Per questo il personale medico del Dipartimento di Neuro-Riabilitazione dell’Ospedale pediatrico “Bambino Gesù” ha espresso la necessità di avere a disposizione una piattaforma robotica che permettesse loro, da una parte, di valutare in maniera oggettiva lo stadio della patologia (fase di evaluation); dall’altra, di sottoporre i pazienti ad un esercizio continuo tale da ottenere il recupero, almeno parziale, delle abilità (fase di rehabilitation). Per rispondere a questa esigenza, si è iniziato con l’affrontare lo studio dell’Anatomia e della Fisiologia, per comprendere in maniera più completa il problema con cui bisognava confrontarsi. È stato,dapprima, preso in esame il neurone, cuore funzionale del Sistema Nervoso Centrale, con le sue caratteristiche principali e con la rete di cellule sensoriali da cui il Sistema Nerovso Centrale trae le proprie informazioni; si passa, quindi, al sistema vestibolare ed a quello locomotorio. L’analisi del sistema vestibolare si è basato sul riconoscimento del ruolo delle differenti strutture che lo compongo: i canali semicircolari, per le accelerazioni angolari, e gli organi otolici, assimilabili ad un accelerometro ed in grado di rilevare le accelerazioni lineari. Per l’apparato locomotore sono stati presentati i differenti elementi base e la loro funzione in relazione al compito di mantenimento della postura; è stata, quindi, spiegata la scelta di modellare il corpo umano come un pendolo inverso single-link e sono state valutate le successive complicazioni, introdotte perché il modello risultasse maggiormente aderente alla realtà e permettesse di studiare in modo più puntuale la cinematica del corpo umano in seguito ad una perturbazione imposta. Avendo a disposizione gli strumenti base per comprendere il funzionamento del corpo umano, si è passati ad analizzare lo stato dell’arte delle piattaforme riabilitative. Lo studio dell’equilibrio è iniziato ben prima di avere a disposizione i sistemi robotici odierni: la stabilometria è nata come osservazione qualitativa della capacità di mantenere l’equilibrio ed è diventata esame quantitativo con l’introduzione della piattaforma di forza, per localizzare la posizione della proiezione a terra del baricentro. Grazie all’evoluzione tecnologica, la stabilometria è stata affiancata, a non sostituita, dallo studio della posturografia dinamica, nella quale è stato introdotto l’elemento di moto della pedana. Si è notato, infatti, come l’equilibrio dinamico risultasse più semplice da mantenere per i soggetti patologici, poiché il moto aggiunto della pedana fornisce loro maggiori informazioni, tali da integrare quelle falsate o rese carenti dalla patologia. La piattaforma riabilitativa, già commercializzata ed entrata nell’usuale utilizzo, è l’EquiTest® System, costituita da una cabina chiusa la cui base può subire traslazioni antero-posteriori o inclinazioni sul piano sagittale, secondo input di tipo sinusoidale di ampiezza predeterminata o proporzionale al micromoto naturale del centro di pressione. L’Equitest permette, inoltre, la stimolazione del segnale visivo, poiché lo schermo di fronte al soggetto proietta un’immagine oscillante con un segnale simile a quello inviato alla base. Con questa strumentazione è possibile analizzare la capacità di mantenere l’equilibrio in condizioni di perturbazione dello stimolo visivo e/o dei segnali somato-sensoriali provenienti dai piedi, ma esclusivamente con perturbazioni sul piano sagittale: questa scelta deriva dall’aver assunto come modello del corpo umano il pendolo inverso. Tuttavia l’avere perturbazioni su un unico piano risulta chiaramente un limite, infatti le perturbazioni reali difficilmente agiscono secondo un singolo asse, i sistemi propriocettivi e vestibolari sono sensibili a stimolazioni su piani differenti da quello sagittale e, infine, la risposta posturale è sensibile alla direzione. Per superare ciò si sono utilizzate in maniera alternativa le pedane già a disposizione, sono adattate agli studi clinici piattaforme inizialmente ad uso sportivo (es. treadmill) oppure sono progettate piattaforme ad-hoc che tengano conto delle problematiche sollevate; la quasi totalità dei progetti sono basati sulla piattaforma di Stewart, un dispositivo completo con i suoi sei gradi di libertà, ma con un campo di lavoro ristretto, un ingombro significativo ed un costo elevato. Le differenti pedane rintracciate in letteratura permettono di analizzare la postura umana in una serie di condizioni molto vasta; tuttavia, perché la ricerca non sia fine a sé stessa, è necessario che i protocolliproposti dai diversi gruppi di ricercatori forniscano risultati confrontabili sia intra- che inter-laboratorio; a testimonianza di ciò, è comprovato l’utilità di riportare non solo i valori massimi di spostamento e velocità, ma anche le accelerazioni e, in altri termini, una descrizione completa dell’input. Le idee raccolte dalla ricerca bibliografica sono presentate in base ai gradi di libertà mantenuti liberi dai differenti sistemi robotici, alle condizioni in cui i test venivano svolti, al segnale di input inviato e a quelli di output raccolti, nonché le caratteristiche dei soggetti. Il movimento più semplice eseguito da una piattaforma è quello della traslazione posteriore ed ha permesso di individuare se le strategie posturali di hip o ankle strategy fossero distinguibili sulla base dei momenti torcenti. La stessa perturbazione è stata, inoltre, utilizzata per studiare le capacità motorie dei bambini sani e di quelle affetti da Paralisi Cerebrale; in particolare per comprendere se, nello studio del cammino, fosse più corretto suddividere i bambini in base all’età e non piuttosto rispetto al loro sviluppo motorio effettivo. Partendo dai risultati precedenti, si è anche cercato di individuare se il problema nella risposta muscolare dei bambini affetti da diplegia spastica fosse nella generazione della contrazione della fibra, nella tempistica o in una disorganizzazione delle fasi di lavoro dei gruppi muscolari. Il primo passaggio logico è estendere il movimento di perturbazione da semplice traslazione indietro a movimento antero-posteriore; con questo tipo di perturbazione in particolare sono state analizzati il pattern head-fixed-to-surface o ankle strategy, in cui la testa si muove con la piattaforma, ed il pattern head-fixed-in-space o hip strategy, in cui la testa viene bloccata nello spazio. La scelta fra queste due possibili strategie è legata principalmente alla frequenza del movimento ed alla possibilità per i soggetti di utilizzare o meno la vista, infatti nel caso di esercizio ripetuto ad occhi chiusi il pattern con la testa ferma nello spazio non viene mai realizzato. È stato possibile, in questo modo, riconoscere i ruoli dei differenti sistemi sensoriali: il somato-sensoriale è specifico per la coordinazione motoria, mentre la vista ed il sistema vestibolare sono funzionali alla stabilizzazione della testa nello spazio. I vari protocolli si sono proposti, ad esempio, di analizzare la modalità di transizione naturale fra i due pattern posturali o la possibilità di passare volontariamente da un pattern all’altro. È stato introdotto nel protocollo, infine, un disturbo propriocettivo, cioè l’elettro-stimolazione di alcuni gruppi muscolari degli arti inferiori, per comprendere se il controllo dell’equilibrio si basasse su un feedback propriocettivo o su un’anticipazione di quanto accadrà. Gli studi con perturbazioni di traslazione sono affiancati da quelli che impongono rotazioni della base di appoggio su un singolo piano principale: sul piano frontale (angolo di rollio o di roll), sul sagittale (angolo di beccheggio o di pitch) e sul traverso (angolo di imbardata o di yaw). A. Blumle et Al. (2006) hanno cercato di individuare il ruolo cognitivo dell’input visivo in soggetti sani e pazienti vestibolari sottoponendoli a rotazioni fisiche sul piano frontale ed a rotazioni del campo visivo sul piano sagittale; è stato così possibile osservare che la vista veniva utilizzata per mantenersi fermi solo quando la scena era individuata come fissa, facendo registrare ondeggiamenti maggiori del corpo quanto più lo stimolo visivo aveva oscillazioni piccole e lente, mentre veniva sostituita dall’input vestibolare quando lo sfondo era riconosciuto in movimento. È possibile, inoltre, analizzare cosa accade in seguito alla rimozione delle informazioni visive (paesaggio virtuale fermo o di uno schermo blu privo di qualsiasi punto di riferimento) ed al mascheramento dei segnali somato-sensoriali (attraverso le oscillazioni della pedana); sono stati rintracciati, così, comportamenti simili dei soggetti sani e dei pazienti vestibolari quando era utilizzata la scena visiva e forti differenze nel caso di schermo blu, infatti i soggetti sani riescono ancora a mantenersi in equilibrio mentre i patologici tendono a cadere o fare un passo in avanti.Tutte le precedenti piattaforme con perturbazioni sul piano sagittale o frontale prevedevano il soggetto in piedi, al contrario lo studio della risposta del sistema vestibolare a rotazioni sul piano trasverso sono state portate avanti con il soggetto seduto. In particolare, i soggetti vengono fatti sedere sulla sedia di Barany e sottoposti a rotazioni intorno all’asse verticale; il compito di ripetere, alla fine, lo stesso angolo in direzione opposta era eseguito in maniera piuttosto accurata dai soggetti sani e con maggiore imprecisione dai pazienti vestibolari, che in particolare risultavano insensibili alle rotazioni verso la parte lesionata. Altra possibilità è l’utilizzo di un sistema robotico, il Robuter, costituito da una sedia motorizzata in grado di essere controllata via computer per ruotare passivamente il soggetto di un angolo determinato. I soggetti, quindi, devono riprodurre, attraverso un puntatore orizzontale, l’angolo subito o alla fine della perturbazione (reproducing task) o durante il movimento stesso (tracking task), con l’obiettivo di verificare la capacità del Sistema Nervoso Centrale di comprendere correttamente gli angoli subiti e di integrare la velocità angolare on-line, per rendere possibile il compito di tracking. Analizzate le differenti possibilità di perturbazione su un singolo asse vengono presentate ora i movimenti multi-assiali, ma ciò non deve lasciar pensare che il passaggio da input lungo un singolo asse ad input composti sia frutto di un progredire della tecnologia; infatti, in realtà, normalmente il percorso è stato quello opposto e si è passati al movimento lungo un solo asse solo in un secondo tempo, per specializzare la risposta posturale e legare questa alla direzione di perturbazione. L’utilizzo di una pedana in grado di traslare nelle quattro direzioni ha permesso di studiare come la risposta posturale, in temine di angoli fra segmenti, non fosse fortemente legata alla direzione della perturbazione, mentre nell’analisi degli spostamenti del centro di massa e di pressione si riscontravano dei cambiamenti legati alla direzione delle perturbazioni. Studiando anche le forze di reazione, non è stato possibile separare nettamente il controllo utilizzato sul piano sagittale da quello sul piano frontale; infatti sia l’articolazione della caviglia che quella dell’anca vengono utilizzate qualunque sia la direzione della perturbazione e, inoltre, la risposta posturale allo stimolo risulta essere una rimodulazione totale della configurazione corporea in tutti i suoi piani e non solo in quello in cui la perturbazione agisce. N. Nawayseh e M. Griffin (2006) hanno cercato di individuare una relazione fra le caratteristiche dell’input inviato alla piattaforma e la risposta posturale dei soggetti, così da poter predire la reazione ad una qualsiasi perturbazione; la pedana di cui si sono serviti, quindi, era in grado di compiere sia traslazioni che oscillazioni. I risultati, tuttavia, hanno dimostrato che la risposta cinematica variava sì con la frequenza dello stimolo, ma non in maniera uniforme, rendendo così non accurata la deduzione del comportamento posturale ad una perturbazione composta, tranne che analizzando separatamente i casi di traslazione ed oscillazione. Fino a questo punto lo studio dell’equilibrio si è basato su analisi di soggetti totalmente concentrati sul mantenimento dell’equilibrio stesso. Tuttavia, sebbene sia stato dimostrato come l’equilibrio non sia un compito automatico, tuttavia spesso la postura è solo un’attività che il Sistema Nervoso Centrale deve eseguire “in background”, contemporaneamente ad altri esercizi. Quindi, per individuare esattamente l’impegno richiesto dalla postura sono stati proposti esercizi dual task, vale a dire ai soggetti erano assegnati due compiti da svolgere contemporaneamente, uno posturale ed uno di memoria visiva, con la richiesta di concentrarsi sulle due funzioni nello stesso modo o di considerare primaria una volta una ed una volta l’altra. In questo modo è stato notato, come atteso, un miglioramento nell’esecuzione del compito cognitivo quando si chiedeva di prestarvi la massima attenzione, mentre non si è mai osservato una diminuzione della capacità di rimanere in piedi anzi, è stato interessante rilevare che nell’esecuzione del dual task le prestazioni sulla postura erano migliori che nel caso di single task: ciò è facilmente spiegabile se si considera che, per compiere il task di memoria spaziale, è richiesta una stabilizzazione della testa che va ad incidere positivamente anche sulla postura. È quindi auspicabile pensare che, nonostante uno sforzo iniziale maggiore, l’esercizio dual task porti in un secondo momento a risultati migliori. Lo studio della postura non si può svincolare totalmente dallo studio del cammino; in particolare, osservare bambini a differenti età ha permesso di comprendere come veniva raggiunta la maturità nel cammino. Per il cammino, come per la postura, la testa assume un ruolo di primaria importanza; se la testa viene assunta come sistema di riferimento, questo implica che, da una parte, deve essere stabilizzata nello spazio e, dall’altra, il suo movimento deve essere coordinato con quello del corpo. Questa coordinazione si esprime come un anticipo dello sguardo e del movimento totale della testa verso l’obiettivo, in maniera tale che la programmazione del cammino sia sempre un passo avanti all’esecuzione. Gli input su cui ci si è principalmente focalizzati sono stati quello visivo e somato-sensoriale,dimenticando apparentemente del segnale vestibolare: tale scelta è dovuta, principalmente, alla difficoltà a cui si va incontro quando si sceglie di agire su questo sistema. Per incidere direttamente sul segnale vestibolare è necessario, infatti, stimolare elettricamente l’orecchio, eseguire l’esercizio con un test calorimetrico o chiedere direttamemente al soggetto di eseguire il compito principale di equilibrio oscillando volontariamente la testa ad una frequenza stabilita; è possibile così osservare una destabilizzazione, sebbene non drammatica, della postura.Sulla base di quanto raccolto in letteratura e per lavorare in maniera più precisa sulle perturbazioni nel piano orizzontale e sulla stimolazione del sistema vestibolare, si sceglie di ideare una pedana riabilitativa motorizzata, ad un grado di libertà, in grado di far ruotare i soggetti in piedi intorno all’asse verticale. Il progetto della base rotante è presentato sia dal punto di vista della meccanica che del controllo, verificandone poi le caratteristiche metrologiche di riproducibilità ed ripetitività dei movimenti imposti. Il set-up sperimentale utilizzato nei protocolli è costituito da: • una pedana rotante motorizzante; • un sistema opto-elettronico, per la ricostruzione della cinematica del soggetto; • una piattaforma di forza, per acquisire la traiettoria del centro di pressione; • un casco strumentato con cluster di accelerometri e giroscopi, per conoscere la cinematica della testa ed utilizzare i movimenti della stessa come input per la pedana. Sono stati, quindi, esposti una serie di protocolli sia per la valutazione delle abilità posturali e di orientamento dei soggetti sia per la riabilitazione dei pazienti in età pediatrica affetti da emiplegia. Nel primo protocollo presentato si chiede ad adulti sani di percorrere una traiettoria triangolare ad occhi chiusi, sia in direzione oraria che antioraria, in presenza o meno di una peso sulla spalla destra, in modo da valutare l’influenza del carico asimmetrico sulle informazioni di tipo propriocettivo e le modifiche posturali introdotte. Nei successivi due protocolli vengono presentate prove posturali per individuare le strategie di recupero dell’equilibrio e di mantenimento della postura eretta che i soggetti mettono in atto quando sono perturbati su piano orizzontale da un input di tipo non periodico e periodico a frequenza variabile. Sulla base di questi risultati, viene approntato un protocollo riabilitativo per pazienti pediatrici affetti da emiplegia, sia congenita che acquisita, al fine di sbloccare i cingoli pelvico e scapolare e di insegnare loro, attraverso il disequilibrio, una nuova strategia posturale. L’ultimo protocollo è di tipo valutativo, per analizzare le capacità dei soggetti bendati di orientarsi nello spazio in seguito ad una perturbazione sul piano orizzontale. Sono coinvolti in questo design sperimentale sia giovani sani che bambini con emiplegia congenita, per valutare l’integrità del sistema motorio-sensoriale dei pazienti e verificare l’esistenza di un legame fra patologia ed abilità nel riconoscimento spaziale tramite il confronto dei risultati.
Utilizzo di una piattaforma motorizzata e di un casco strumentato per il rilievo della cinematica della testa in condizioni di perturbazione dell'equilibrio
ZANELLI, GIULIA
2008
Abstract
Il mantenimento della postura eretta, in condizioni sia statiche che dinamiche, è un compito delicato per il Sistema Nervoso Centrale, poiché richiede la corretta integrazione ed interpretazione dei segnali provenienti dai differenti sistemi sensoriali, quali quello somato-sensoriale, visivo e vestibolare. La lesioni di uno qualunque di questi sistemi sensoriali o del Sistema Nervoso Centrale stesso provoca seri problemi nella capacità di mantenere la stabilità ed incide sulla abilità dei soggetti di controllare e coordinare correttamente i segmenti corporei, nonché di regolare opportunamente il tono muscolare. In particolare, la Paralisi Cerebrale Infantile è una patologia che si manifesta con una disorganizzazione motoria ed una rigidezza muscolare tali da rendere difficile acquisire le normali abilità necessarie per il mantenimento dell’equilibrio. Per questo il personale medico del Dipartimento di Neuro-Riabilitazione dell’Ospedale pediatrico “Bambino Gesù” ha espresso la necessità di avere a disposizione una piattaforma robotica che permettesse loro, da una parte, di valutare in maniera oggettiva lo stadio della patologia (fase di evaluation); dall’altra, di sottoporre i pazienti ad un esercizio continuo tale da ottenere il recupero, almeno parziale, delle abilità (fase di rehabilitation). Per rispondere a questa esigenza, si è iniziato con l’affrontare lo studio dell’Anatomia e della Fisiologia, per comprendere in maniera più completa il problema con cui bisognava confrontarsi. È stato,dapprima, preso in esame il neurone, cuore funzionale del Sistema Nervoso Centrale, con le sue caratteristiche principali e con la rete di cellule sensoriali da cui il Sistema Nerovso Centrale trae le proprie informazioni; si passa, quindi, al sistema vestibolare ed a quello locomotorio. L’analisi del sistema vestibolare si è basato sul riconoscimento del ruolo delle differenti strutture che lo compongo: i canali semicircolari, per le accelerazioni angolari, e gli organi otolici, assimilabili ad un accelerometro ed in grado di rilevare le accelerazioni lineari. Per l’apparato locomotore sono stati presentati i differenti elementi base e la loro funzione in relazione al compito di mantenimento della postura; è stata, quindi, spiegata la scelta di modellare il corpo umano come un pendolo inverso single-link e sono state valutate le successive complicazioni, introdotte perché il modello risultasse maggiormente aderente alla realtà e permettesse di studiare in modo più puntuale la cinematica del corpo umano in seguito ad una perturbazione imposta. Avendo a disposizione gli strumenti base per comprendere il funzionamento del corpo umano, si è passati ad analizzare lo stato dell’arte delle piattaforme riabilitative. Lo studio dell’equilibrio è iniziato ben prima di avere a disposizione i sistemi robotici odierni: la stabilometria è nata come osservazione qualitativa della capacità di mantenere l’equilibrio ed è diventata esame quantitativo con l’introduzione della piattaforma di forza, per localizzare la posizione della proiezione a terra del baricentro. Grazie all’evoluzione tecnologica, la stabilometria è stata affiancata, a non sostituita, dallo studio della posturografia dinamica, nella quale è stato introdotto l’elemento di moto della pedana. Si è notato, infatti, come l’equilibrio dinamico risultasse più semplice da mantenere per i soggetti patologici, poiché il moto aggiunto della pedana fornisce loro maggiori informazioni, tali da integrare quelle falsate o rese carenti dalla patologia. La piattaforma riabilitativa, già commercializzata ed entrata nell’usuale utilizzo, è l’EquiTest® System, costituita da una cabina chiusa la cui base può subire traslazioni antero-posteriori o inclinazioni sul piano sagittale, secondo input di tipo sinusoidale di ampiezza predeterminata o proporzionale al micromoto naturale del centro di pressione. L’Equitest permette, inoltre, la stimolazione del segnale visivo, poiché lo schermo di fronte al soggetto proietta un’immagine oscillante con un segnale simile a quello inviato alla base. Con questa strumentazione è possibile analizzare la capacità di mantenere l’equilibrio in condizioni di perturbazione dello stimolo visivo e/o dei segnali somato-sensoriali provenienti dai piedi, ma esclusivamente con perturbazioni sul piano sagittale: questa scelta deriva dall’aver assunto come modello del corpo umano il pendolo inverso. Tuttavia l’avere perturbazioni su un unico piano risulta chiaramente un limite, infatti le perturbazioni reali difficilmente agiscono secondo un singolo asse, i sistemi propriocettivi e vestibolari sono sensibili a stimolazioni su piani differenti da quello sagittale e, infine, la risposta posturale è sensibile alla direzione. Per superare ciò si sono utilizzate in maniera alternativa le pedane già a disposizione, sono adattate agli studi clinici piattaforme inizialmente ad uso sportivo (es. treadmill) oppure sono progettate piattaforme ad-hoc che tengano conto delle problematiche sollevate; la quasi totalità dei progetti sono basati sulla piattaforma di Stewart, un dispositivo completo con i suoi sei gradi di libertà, ma con un campo di lavoro ristretto, un ingombro significativo ed un costo elevato. Le differenti pedane rintracciate in letteratura permettono di analizzare la postura umana in una serie di condizioni molto vasta; tuttavia, perché la ricerca non sia fine a sé stessa, è necessario che i protocolliproposti dai diversi gruppi di ricercatori forniscano risultati confrontabili sia intra- che inter-laboratorio; a testimonianza di ciò, è comprovato l’utilità di riportare non solo i valori massimi di spostamento e velocità, ma anche le accelerazioni e, in altri termini, una descrizione completa dell’input. Le idee raccolte dalla ricerca bibliografica sono presentate in base ai gradi di libertà mantenuti liberi dai differenti sistemi robotici, alle condizioni in cui i test venivano svolti, al segnale di input inviato e a quelli di output raccolti, nonché le caratteristiche dei soggetti. Il movimento più semplice eseguito da una piattaforma è quello della traslazione posteriore ed ha permesso di individuare se le strategie posturali di hip o ankle strategy fossero distinguibili sulla base dei momenti torcenti. La stessa perturbazione è stata, inoltre, utilizzata per studiare le capacità motorie dei bambini sani e di quelle affetti da Paralisi Cerebrale; in particolare per comprendere se, nello studio del cammino, fosse più corretto suddividere i bambini in base all’età e non piuttosto rispetto al loro sviluppo motorio effettivo. Partendo dai risultati precedenti, si è anche cercato di individuare se il problema nella risposta muscolare dei bambini affetti da diplegia spastica fosse nella generazione della contrazione della fibra, nella tempistica o in una disorganizzazione delle fasi di lavoro dei gruppi muscolari. Il primo passaggio logico è estendere il movimento di perturbazione da semplice traslazione indietro a movimento antero-posteriore; con questo tipo di perturbazione in particolare sono state analizzati il pattern head-fixed-to-surface o ankle strategy, in cui la testa si muove con la piattaforma, ed il pattern head-fixed-in-space o hip strategy, in cui la testa viene bloccata nello spazio. La scelta fra queste due possibili strategie è legata principalmente alla frequenza del movimento ed alla possibilità per i soggetti di utilizzare o meno la vista, infatti nel caso di esercizio ripetuto ad occhi chiusi il pattern con la testa ferma nello spazio non viene mai realizzato. È stato possibile, in questo modo, riconoscere i ruoli dei differenti sistemi sensoriali: il somato-sensoriale è specifico per la coordinazione motoria, mentre la vista ed il sistema vestibolare sono funzionali alla stabilizzazione della testa nello spazio. I vari protocolli si sono proposti, ad esempio, di analizzare la modalità di transizione naturale fra i due pattern posturali o la possibilità di passare volontariamente da un pattern all’altro. È stato introdotto nel protocollo, infine, un disturbo propriocettivo, cioè l’elettro-stimolazione di alcuni gruppi muscolari degli arti inferiori, per comprendere se il controllo dell’equilibrio si basasse su un feedback propriocettivo o su un’anticipazione di quanto accadrà. Gli studi con perturbazioni di traslazione sono affiancati da quelli che impongono rotazioni della base di appoggio su un singolo piano principale: sul piano frontale (angolo di rollio o di roll), sul sagittale (angolo di beccheggio o di pitch) e sul traverso (angolo di imbardata o di yaw). A. Blumle et Al. (2006) hanno cercato di individuare il ruolo cognitivo dell’input visivo in soggetti sani e pazienti vestibolari sottoponendoli a rotazioni fisiche sul piano frontale ed a rotazioni del campo visivo sul piano sagittale; è stato così possibile osservare che la vista veniva utilizzata per mantenersi fermi solo quando la scena era individuata come fissa, facendo registrare ondeggiamenti maggiori del corpo quanto più lo stimolo visivo aveva oscillazioni piccole e lente, mentre veniva sostituita dall’input vestibolare quando lo sfondo era riconosciuto in movimento. È possibile, inoltre, analizzare cosa accade in seguito alla rimozione delle informazioni visive (paesaggio virtuale fermo o di uno schermo blu privo di qualsiasi punto di riferimento) ed al mascheramento dei segnali somato-sensoriali (attraverso le oscillazioni della pedana); sono stati rintracciati, così, comportamenti simili dei soggetti sani e dei pazienti vestibolari quando era utilizzata la scena visiva e forti differenze nel caso di schermo blu, infatti i soggetti sani riescono ancora a mantenersi in equilibrio mentre i patologici tendono a cadere o fare un passo in avanti.Tutte le precedenti piattaforme con perturbazioni sul piano sagittale o frontale prevedevano il soggetto in piedi, al contrario lo studio della risposta del sistema vestibolare a rotazioni sul piano trasverso sono state portate avanti con il soggetto seduto. In particolare, i soggetti vengono fatti sedere sulla sedia di Barany e sottoposti a rotazioni intorno all’asse verticale; il compito di ripetere, alla fine, lo stesso angolo in direzione opposta era eseguito in maniera piuttosto accurata dai soggetti sani e con maggiore imprecisione dai pazienti vestibolari, che in particolare risultavano insensibili alle rotazioni verso la parte lesionata. Altra possibilità è l’utilizzo di un sistema robotico, il Robuter, costituito da una sedia motorizzata in grado di essere controllata via computer per ruotare passivamente il soggetto di un angolo determinato. I soggetti, quindi, devono riprodurre, attraverso un puntatore orizzontale, l’angolo subito o alla fine della perturbazione (reproducing task) o durante il movimento stesso (tracking task), con l’obiettivo di verificare la capacità del Sistema Nervoso Centrale di comprendere correttamente gli angoli subiti e di integrare la velocità angolare on-line, per rendere possibile il compito di tracking. Analizzate le differenti possibilità di perturbazione su un singolo asse vengono presentate ora i movimenti multi-assiali, ma ciò non deve lasciar pensare che il passaggio da input lungo un singolo asse ad input composti sia frutto di un progredire della tecnologia; infatti, in realtà, normalmente il percorso è stato quello opposto e si è passati al movimento lungo un solo asse solo in un secondo tempo, per specializzare la risposta posturale e legare questa alla direzione di perturbazione. L’utilizzo di una pedana in grado di traslare nelle quattro direzioni ha permesso di studiare come la risposta posturale, in temine di angoli fra segmenti, non fosse fortemente legata alla direzione della perturbazione, mentre nell’analisi degli spostamenti del centro di massa e di pressione si riscontravano dei cambiamenti legati alla direzione delle perturbazioni. Studiando anche le forze di reazione, non è stato possibile separare nettamente il controllo utilizzato sul piano sagittale da quello sul piano frontale; infatti sia l’articolazione della caviglia che quella dell’anca vengono utilizzate qualunque sia la direzione della perturbazione e, inoltre, la risposta posturale allo stimolo risulta essere una rimodulazione totale della configurazione corporea in tutti i suoi piani e non solo in quello in cui la perturbazione agisce. N. Nawayseh e M. Griffin (2006) hanno cercato di individuare una relazione fra le caratteristiche dell’input inviato alla piattaforma e la risposta posturale dei soggetti, così da poter predire la reazione ad una qualsiasi perturbazione; la pedana di cui si sono serviti, quindi, era in grado di compiere sia traslazioni che oscillazioni. I risultati, tuttavia, hanno dimostrato che la risposta cinematica variava sì con la frequenza dello stimolo, ma non in maniera uniforme, rendendo così non accurata la deduzione del comportamento posturale ad una perturbazione composta, tranne che analizzando separatamente i casi di traslazione ed oscillazione. Fino a questo punto lo studio dell’equilibrio si è basato su analisi di soggetti totalmente concentrati sul mantenimento dell’equilibrio stesso. Tuttavia, sebbene sia stato dimostrato come l’equilibrio non sia un compito automatico, tuttavia spesso la postura è solo un’attività che il Sistema Nervoso Centrale deve eseguire “in background”, contemporaneamente ad altri esercizi. Quindi, per individuare esattamente l’impegno richiesto dalla postura sono stati proposti esercizi dual task, vale a dire ai soggetti erano assegnati due compiti da svolgere contemporaneamente, uno posturale ed uno di memoria visiva, con la richiesta di concentrarsi sulle due funzioni nello stesso modo o di considerare primaria una volta una ed una volta l’altra. In questo modo è stato notato, come atteso, un miglioramento nell’esecuzione del compito cognitivo quando si chiedeva di prestarvi la massima attenzione, mentre non si è mai osservato una diminuzione della capacità di rimanere in piedi anzi, è stato interessante rilevare che nell’esecuzione del dual task le prestazioni sulla postura erano migliori che nel caso di single task: ciò è facilmente spiegabile se si considera che, per compiere il task di memoria spaziale, è richiesta una stabilizzazione della testa che va ad incidere positivamente anche sulla postura. È quindi auspicabile pensare che, nonostante uno sforzo iniziale maggiore, l’esercizio dual task porti in un secondo momento a risultati migliori. Lo studio della postura non si può svincolare totalmente dallo studio del cammino; in particolare, osservare bambini a differenti età ha permesso di comprendere come veniva raggiunta la maturità nel cammino. Per il cammino, come per la postura, la testa assume un ruolo di primaria importanza; se la testa viene assunta come sistema di riferimento, questo implica che, da una parte, deve essere stabilizzata nello spazio e, dall’altra, il suo movimento deve essere coordinato con quello del corpo. Questa coordinazione si esprime come un anticipo dello sguardo e del movimento totale della testa verso l’obiettivo, in maniera tale che la programmazione del cammino sia sempre un passo avanti all’esecuzione. Gli input su cui ci si è principalmente focalizzati sono stati quello visivo e somato-sensoriale,dimenticando apparentemente del segnale vestibolare: tale scelta è dovuta, principalmente, alla difficoltà a cui si va incontro quando si sceglie di agire su questo sistema. Per incidere direttamente sul segnale vestibolare è necessario, infatti, stimolare elettricamente l’orecchio, eseguire l’esercizio con un test calorimetrico o chiedere direttamemente al soggetto di eseguire il compito principale di equilibrio oscillando volontariamente la testa ad una frequenza stabilita; è possibile così osservare una destabilizzazione, sebbene non drammatica, della postura.Sulla base di quanto raccolto in letteratura e per lavorare in maniera più precisa sulle perturbazioni nel piano orizzontale e sulla stimolazione del sistema vestibolare, si sceglie di ideare una pedana riabilitativa motorizzata, ad un grado di libertà, in grado di far ruotare i soggetti in piedi intorno all’asse verticale. Il progetto della base rotante è presentato sia dal punto di vista della meccanica che del controllo, verificandone poi le caratteristiche metrologiche di riproducibilità ed ripetitività dei movimenti imposti. Il set-up sperimentale utilizzato nei protocolli è costituito da: • una pedana rotante motorizzante; • un sistema opto-elettronico, per la ricostruzione della cinematica del soggetto; • una piattaforma di forza, per acquisire la traiettoria del centro di pressione; • un casco strumentato con cluster di accelerometri e giroscopi, per conoscere la cinematica della testa ed utilizzare i movimenti della stessa come input per la pedana. Sono stati, quindi, esposti una serie di protocolli sia per la valutazione delle abilità posturali e di orientamento dei soggetti sia per la riabilitazione dei pazienti in età pediatrica affetti da emiplegia. Nel primo protocollo presentato si chiede ad adulti sani di percorrere una traiettoria triangolare ad occhi chiusi, sia in direzione oraria che antioraria, in presenza o meno di una peso sulla spalla destra, in modo da valutare l’influenza del carico asimmetrico sulle informazioni di tipo propriocettivo e le modifiche posturali introdotte. Nei successivi due protocolli vengono presentate prove posturali per individuare le strategie di recupero dell’equilibrio e di mantenimento della postura eretta che i soggetti mettono in atto quando sono perturbati su piano orizzontale da un input di tipo non periodico e periodico a frequenza variabile. Sulla base di questi risultati, viene approntato un protocollo riabilitativo per pazienti pediatrici affetti da emiplegia, sia congenita che acquisita, al fine di sbloccare i cingoli pelvico e scapolare e di insegnare loro, attraverso il disequilibrio, una nuova strategia posturale. L’ultimo protocollo è di tipo valutativo, per analizzare le capacità dei soggetti bendati di orientarsi nello spazio in seguito ad una perturbazione sul piano orizzontale. Sono coinvolti in questo design sperimentale sia giovani sani che bambini con emiplegia congenita, per valutare l’integrità del sistema motorio-sensoriale dei pazienti e verificare l’esistenza di un legame fra patologia ed abilità nel riconoscimento spaziale tramite il confronto dei risultati.File | Dimensione | Formato | |
---|---|---|---|
tesiZanelli.pdf
accesso solo da BNCF e BNCR
Dimensione
12.94 MB
Formato
Adobe PDF
|
12.94 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/173927
URN:NBN:IT:UNIPD-173927