L'attività di ricerca riportata nella presente tesi riguarda diverse aree della scienza dei materiali nanocompositi e mira a dare un contributo nell'avanzamento del suo stato dell'arte. Uno degli ambiti principali di indagine è stato inerente allo studio degli effetti della distribuzione dei rinforzi sulle proprietà meccaniche esibite dai polimeri nanomodificati. Diversi approcci, computazionali e teorici, sono stati sviluppati, sfruttando considerazioni statistiche, l'analisi agli elementi finiti e la modellazione micromeccanica. E' stata eseguita la nanomodificazione di diverse resine epossidiche e la produzione di laminati in fibra di vetro con matrici nanomodificate. Sono quindi stati studiati gli effetti della nanomodificazione sulle proprietà meccaniche di questi compositi, al fine di validare modelli previsionali e fornire dati ai progettisti di materiali. I risultati finora conseguiti evidenziano l'importanza che, in questa classe di materiali, ricopre lo studio delle interazioni alla nanoscala che si sviluppano tra i nanorinforzi e la matrice. La tesi è articolata in una introduzione, seguita da due sezioni dedicate all'attività sperimentale e alla modellazione, e da una appendice a concludere. La sezione inerente l'attività sperimentale è costituita da quattro capitoli. Il primo contiene i risultati dei test sperimentali eseguiti su resine epossidiche nanomodificate, volti ad indagarne le proprietà meccaniche includendo l'effetto dei parametri di processo. E' inoltre riportato il confronto tra l'incremento della tenacità a frattura misurato sperimentalmente e le previsioni di un modello teorico, evidenziando una soddisfacente congruenza dei risultati. Il secondo capitolo riporta lo studio degli effetti della temperatura sulla tenacità a frattura dello stesso materiale. Tale analisi rimarca la fondamentale importanza dei parametri di processo e della temperatura di prova sugli effetti della nanomodificazione. Il terzo capitolo considera un diverso aspetto della nanomodificazione, ovvero la resistenza di campioni intagliati, prodotti con resine epossidiche rinforzate con nanoplatelets. Il quarto capitolo riporta l'attività di ricerca portata avanti sull'impiego di matrici nanomodificate in laminati rinforzati in fibra di vetro. Oggetto di analisi sono le proprietà meccaniche dipendenti dalla matrice e la possibilità di produrre laminati con proprietà antibatteriche. La sezione inerente l'attività di modellazione è invece costituita da tre capitoli. Il primo contiene un confronto tra due approcci volti alla stima delle proprietà elastiche di un materiale nanocomposito, considerando in modo esplicito la presenza di una interfase che circonda i nanorinforzi. Il primo degli approcci implementati è un modello micromeccanico in due passi, mentre il secondo è basato su una analisi agli elementi finiti. Il secondo capitolo riporta l'attività di ricerca inerente la creazione di volumi rappresentativi di materiali rinforzati da nanoparticelle. Tale studio si basa sull'impiego di un algoritmo in grado di considerare aspetti statistici volti alla riduzione della dimensione del volume di controllo, pur mantenendone la rappresentatività. Sono quindi riportate le analisi sull'estensione dell'interfase e sulle proprietà elastiche globali del composito, valutate tramite analisi agli elementi finiti. Il terzo capitolo estende i concetti esposti nel precedente per la generazione di volumi rappresentativi di materiali rinforzati con nanoplatelets. Un approccio basato sull'algoritmo di random sequential absorption è stato implementato, evidenziando gli effetti che questo comporta sulla distribuzione dei rinforzi. E' stata quindi proposta una nuova versione di questo algoritmo, capace di rimuovere queste conseguenze indesiderate. L'appendice è dedicata all'esposizione dell'attività svolta nell'implementazione di approcci che però non sono ancora stati completati. In essa sono riportati i risultati finora conseguiti sull'uso della dinamica molecolare nella simulazione di polimeri e nanocompositi. In particolare è elencata una procedura dettagliata per la simulazione di resine epossidiche, e la prima parte di un approccio per lo studio di resine epossidiche rinforzate con nanoclay.

MODELLING AND OPTIMIZATION OF THE MECHANICAL PROPERTIES OF POLYMER NANOCOMPOSITES

PONTEFISSO, ALESSANDRO
2015

Abstract

L'attività di ricerca riportata nella presente tesi riguarda diverse aree della scienza dei materiali nanocompositi e mira a dare un contributo nell'avanzamento del suo stato dell'arte. Uno degli ambiti principali di indagine è stato inerente allo studio degli effetti della distribuzione dei rinforzi sulle proprietà meccaniche esibite dai polimeri nanomodificati. Diversi approcci, computazionali e teorici, sono stati sviluppati, sfruttando considerazioni statistiche, l'analisi agli elementi finiti e la modellazione micromeccanica. E' stata eseguita la nanomodificazione di diverse resine epossidiche e la produzione di laminati in fibra di vetro con matrici nanomodificate. Sono quindi stati studiati gli effetti della nanomodificazione sulle proprietà meccaniche di questi compositi, al fine di validare modelli previsionali e fornire dati ai progettisti di materiali. I risultati finora conseguiti evidenziano l'importanza che, in questa classe di materiali, ricopre lo studio delle interazioni alla nanoscala che si sviluppano tra i nanorinforzi e la matrice. La tesi è articolata in una introduzione, seguita da due sezioni dedicate all'attività sperimentale e alla modellazione, e da una appendice a concludere. La sezione inerente l'attività sperimentale è costituita da quattro capitoli. Il primo contiene i risultati dei test sperimentali eseguiti su resine epossidiche nanomodificate, volti ad indagarne le proprietà meccaniche includendo l'effetto dei parametri di processo. E' inoltre riportato il confronto tra l'incremento della tenacità a frattura misurato sperimentalmente e le previsioni di un modello teorico, evidenziando una soddisfacente congruenza dei risultati. Il secondo capitolo riporta lo studio degli effetti della temperatura sulla tenacità a frattura dello stesso materiale. Tale analisi rimarca la fondamentale importanza dei parametri di processo e della temperatura di prova sugli effetti della nanomodificazione. Il terzo capitolo considera un diverso aspetto della nanomodificazione, ovvero la resistenza di campioni intagliati, prodotti con resine epossidiche rinforzate con nanoplatelets. Il quarto capitolo riporta l'attività di ricerca portata avanti sull'impiego di matrici nanomodificate in laminati rinforzati in fibra di vetro. Oggetto di analisi sono le proprietà meccaniche dipendenti dalla matrice e la possibilità di produrre laminati con proprietà antibatteriche. La sezione inerente l'attività di modellazione è invece costituita da tre capitoli. Il primo contiene un confronto tra due approcci volti alla stima delle proprietà elastiche di un materiale nanocomposito, considerando in modo esplicito la presenza di una interfase che circonda i nanorinforzi. Il primo degli approcci implementati è un modello micromeccanico in due passi, mentre il secondo è basato su una analisi agli elementi finiti. Il secondo capitolo riporta l'attività di ricerca inerente la creazione di volumi rappresentativi di materiali rinforzati da nanoparticelle. Tale studio si basa sull'impiego di un algoritmo in grado di considerare aspetti statistici volti alla riduzione della dimensione del volume di controllo, pur mantenendone la rappresentatività. Sono quindi riportate le analisi sull'estensione dell'interfase e sulle proprietà elastiche globali del composito, valutate tramite analisi agli elementi finiti. Il terzo capitolo estende i concetti esposti nel precedente per la generazione di volumi rappresentativi di materiali rinforzati con nanoplatelets. Un approccio basato sull'algoritmo di random sequential absorption è stato implementato, evidenziando gli effetti che questo comporta sulla distribuzione dei rinforzi. E' stata quindi proposta una nuova versione di questo algoritmo, capace di rimuovere queste conseguenze indesiderate. L'appendice è dedicata all'esposizione dell'attività svolta nell'implementazione di approcci che però non sono ancora stati completati. In essa sono riportati i risultati finora conseguiti sull'uso della dinamica molecolare nella simulazione di polimeri e nanocompositi. In particolare è elencata una procedura dettagliata per la simulazione di resine epossidiche, e la prima parte di un approccio per lo studio di resine epossidiche rinforzate con nanoclay.
27-feb-2015
Inglese
Nanocomposite Mechanical Properties Modelling Processing
ZAPPALORTO, MICHELE
PERSONA, ALESSANDRO
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
pontefisso_alessandro_thesis.pdf

accesso aperto

Dimensione 10.84 MB
Formato Adobe PDF
10.84 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/173980
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-173980