In questa tesi ci occupiamo di due problemi. Nella prima parte consideriamo delle diffusioni ipoellittiche, sia sotto una condizione di Hormander forte che debole. Troviamo delle stime gaussiane per la densità della legge della soluzione in tempo corto. Uno strumento fondamentale per dimostrare questo tipo di stime è il calcolo di Malliavin. In particolare, utilizziamo delle tecniche sviluppate negli ultimi anni per affrontare dei problemi degeneri. Poi, grazie a queste stime in tempo corto, troviamo dei bound inferiore e superiore esponenziali per la probabilità che la diffusione rimanga in un piccolo tubo attorno a una traiettoria deterministica, fino a un tempo fissato. In questo contesto ipoellittico, la forma del tubo deve riflettere il fatto che la diffusione si muove con una velocità diversa nella direzione dei coefficienti di diffusione e nella direzione delle parentesi di Lie. Per questo motivo introduciamo una norma che tenga conto di questo comportamento anisotropo, adattabile al caso di Hormander forte e debole. Nel caso Hormander forte stabiliamo un'equivalenza tra questa norma e la distanza di controllo classica. Nel caso Hormander debole introduciamo una distanza di controllo equivalente adeguata. Nella seconda parte della tesi lavoriamo con dei modelli a volatilità stocastica con ritorno alla media, in cui la volatilità è diretta da un processo di salto. Supponiamo inizialmente che i salti siano dati da un processo di Poisson, e consideriamo il decadimento delle correlazioni incrociate, sia teoricamente che empiricamente. Questo ci porta a studiare un algoritmo per identificare i picchi nel profilo della volatilità. Consideriamo successivamente un fenomeno più sottile largamente osservato negli indici finanziari: il "multiscaling" dei momenti, ovvero il fatto che i momenti d'ordine q dei log-incrementi del prezzo su un tempo h, hanno un'ampiezza di ordine h a una certa potenza, che è non lineare in q. Lavoriamo con dei modelli in cui la volatilità è data da un'equazione differenziale stocastica con ritorno alla media, diretta da un subordinatore di Lévy. Mostriamo che il multiscaling si produce se la misura caratteristica del Lévy ha delle code di legge di potenza e il ritorno alla media è superlineare all'infinito. In questo caso l'esponente di scaling è lineare a tratti.

Tube Estimates for Hypoelliptic Diffusions and Scaling Properties of Stochastic Volatility Models

PIGATO, PAOLO
2015

Abstract

In questa tesi ci occupiamo di due problemi. Nella prima parte consideriamo delle diffusioni ipoellittiche, sia sotto una condizione di Hormander forte che debole. Troviamo delle stime gaussiane per la densità della legge della soluzione in tempo corto. Uno strumento fondamentale per dimostrare questo tipo di stime è il calcolo di Malliavin. In particolare, utilizziamo delle tecniche sviluppate negli ultimi anni per affrontare dei problemi degeneri. Poi, grazie a queste stime in tempo corto, troviamo dei bound inferiore e superiore esponenziali per la probabilità che la diffusione rimanga in un piccolo tubo attorno a una traiettoria deterministica, fino a un tempo fissato. In questo contesto ipoellittico, la forma del tubo deve riflettere il fatto che la diffusione si muove con una velocità diversa nella direzione dei coefficienti di diffusione e nella direzione delle parentesi di Lie. Per questo motivo introduciamo una norma che tenga conto di questo comportamento anisotropo, adattabile al caso di Hormander forte e debole. Nel caso Hormander forte stabiliamo un'equivalenza tra questa norma e la distanza di controllo classica. Nel caso Hormander debole introduciamo una distanza di controllo equivalente adeguata. Nella seconda parte della tesi lavoriamo con dei modelli a volatilità stocastica con ritorno alla media, in cui la volatilità è diretta da un processo di salto. Supponiamo inizialmente che i salti siano dati da un processo di Poisson, e consideriamo il decadimento delle correlazioni incrociate, sia teoricamente che empiricamente. Questo ci porta a studiare un algoritmo per identificare i picchi nel profilo della volatilità. Consideriamo successivamente un fenomeno più sottile largamente osservato negli indici finanziari: il "multiscaling" dei momenti, ovvero il fatto che i momenti d'ordine q dei log-incrementi del prezzo su un tempo h, hanno un'ampiezza di ordine h a una certa potenza, che è non lineare in q. Lavoriamo con dei modelli in cui la volatilità è data da un'equazione differenziale stocastica con ritorno alla media, diretta da un subordinatore di Lévy. Mostriamo che il multiscaling si produce se la misura caratteristica del Lévy ha delle code di legge di potenza e il ritorno alla media è superlineare all'infinito. In questo caso l'esponente di scaling è lineare a tratti.
21-lug-2015
Inglese
hypoellipticity, Hormander condition, tube estimates for Ito processes, density estimates, stochastic volatility, multi-scaling.
Università degli studi di Padova
184
File in questo prodotto:
File Dimensione Formato  
paolo_pigato_tesi.pdf

accesso aperto

Dimensione 2.23 MB
Formato Adobe PDF
2.23 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/174271
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-174271