La fotosintesi ossigenica è un processo fondamentale per la vita sulla terra in quanto consente a piante e alghe di convertire la luce solare in energia chimica generando ossigeno molecolare come sottoprodotto. La luce può anche essere dannosa e quando è in eccesso può portare alla sovreccitazione dei fotosistemi e alla produzione di specie reattive dell'ossigeno (ROS) con un conseguente calo dell’efficienza fotosintetica. In un ambiente naturale estremamente dinamico gli organismi fotosintetici hanno evoluto meccanismi sofisticati in grado di modulare la loro efficienza per catturare e sfruttare al meglio la luce. Per esempio il cosiddetto quenching non fotochimico della fluorescenza (NPQ) agisce dissipando l’energia in eccesso sotto forma di calore ed è utilizzato come sistema di risposta a breve termine agi stress luminosi col fine di evitare danni ossidativi. Il carotenoide zeaxantina appartenente al ciclo delle xantofille partecipa attivamente a questa risposta di dissipazione termica mantenendo però anche un ruolo diretto nello scavenging dei ROS generati nella membrana tilacoidale. L’acclimatazione invece è un processo a lungo termine che agisce direttamente modellando la composizione dell'apparato fotosintetico in risposta all'intensità della luce ad esempio attraverso modifiche nella composizione proteica. I meccanismi di regolazione e protezione indotti dalla luce sono spesso legati anche a modulazioni dei flussi elettronici attraverso la membrana tilacoidale. La via principale per le reazioni alla luce della fotosintesi infatti, il flusso elettronico lineare, è in grado di modulare la sua attività a seconda della richiesta metabolica e può essere sostenuto anche da pathways elettronici alternativi che influenzano il gradiente tilacoidale e il rapporto ATP / NADPH. L'obiettivo generale di questo lavoro è quello di indagare i diversi meccanismi che modulano l'efficienza fotosintetica nella microalga Nannochloropsis gaditana al fine di aumentare la conoscenza ancora limitata di questa microalga e sfruttarla per ottimizzare l'efficienza fotosintetica in un ottica di coltivazione su larga scala, anche attraverso lo sviluppo modelli di calcolo. Gli strumenti spettroscopici sviluppati per districare la complessità dei meccanismi di regolazione della fotosintesi in Nannochloropsis sono stati applicati con successo anche per lo studio di altri organismi fotosintetici quali, Chlamydomonas reinhardtii, Physcomitrella patens e Koliella antarctica. Nannochloropsis gaditana è un'alga eucariotica del phylum heterokonts originata da un evento di endosimbiosi secondaria. Specie di questo gruppo hanno ricevuto una crescente attenzione nella comunità scientifica che riflette la loro potenziale applicazione nella produzione di biocarburanti. Nonostante questo le proprietà fotosintetici e fisiologiche di questi organismi rimangono ancora poco caratterizzate. La specie Nannochloropsis possiede un apparato fotosintetico peculiare contenente come pigmenti più abbondanti clorofilla a, violaxantina e vaucheriaxantina. La regolazione dell'apparato fotosintetico in questa microalga è stato approfondito nella Sezione B. Il nostro studio si è concentrato in primo luogo sulla risposta di acclimatazione in Nannochloropsis gaditana sottoposta a prolungate esposizioni a luce bassa e alta. L’illuminazione intensa induce una diminuzione del contenuto di clorofilla e delle dimensioni della taglia d’antenna del PSI e II. Cellule coltivate in alta luce mostrano anche un aumento del trasporto fotosintetico degli elettroni di pari passo con un maggior contributo da parte del trasporto alternativo ciclico. Anche quando esposte a intensità di luce estreme, le cellule di Nannochloropsis non attivano le risposte di foto-protezione, come ad esempio NPQ e il ciclo delle xantofille, in modo costitutivo. Al contrario, queste risposte rimangono a disposizione per l'attivazione in risposta a ulteriori modifiche dell’ illuminazione. Questi risultati suggeriscono che l’NPQ e il ciclo delle xantofille in Nannochloropsis gaditana giocano un ruolo esclusivo in risposta alle variazioni luminose a breve termine, ma solo un ruolo marginale nelle risposte al stress luminosi cronico. Al fine di esplorare ulteriormente la risposta a breve termine mediata dal ciclo delle xantofille è stato studiato l'effetto dell’ accumulo di zeaxantina nell'apparato fotosintetico di Nannochloropsis gaditana rivelando alcuni aspetti peculiari. E’ interessante notare che le molecole di zeaxantina si trovano ad essere sintetizzate costitutivamente in questa microalga, anche in condizioni di scarsa illuminazione in cui il ciclo delle xantofille non viene indotto. Inoltre questa xantofilla ha dimostrato di non avere un sito di legame specifico nelle diverse componenti proteiche dell’apparato fotosintetico e ha in aggiunta un forte effetto nella risposta di NPQ. L’effetto legato all’ NPQ sembra legato principalmente alla sintesi de novo di zeaxantina mentre le molecole già presenti nel’apparato fotosintetico sono coinvolte in un NPQ transitorio attivo solo nel primo minuto dopo la transizione luce-buio. La regolazione dell'apparato fotosintetico è stata valutata anche in N. salina in un sistema di coltivazione più compatibile con la produzione su larga scala, un fotobioreattore a flusso continuo. È interessante notare che modificare il tempo di permanenza mantenendo la stessa irradiazione influisce sulla concentrazione di biomassa e produce una risposta di acclimatazione molto simile a quella osservata in N. gaditana coltivata in sistema a batch, come precedentemente discusso. Questi risultati evidenziano l'importanza della concentrazione della biomassa e la sua connessione con la luce somministrata come parametro da ottimizzare per aumentare la produttività delle colture microalgali. L'indagine molecolare sui meccanismi alla base dell’utilizzo della luce in Nannochloropsis è il punto di partenza per lo sviluppo di modelli computazionali che mirano a simulare e prevedere il comportamento delle microalghe nell’ottica di ottimizzare la produttività in sistemi di coltivazione su larga scala. La Sezione C tratta dello sviluppo e dell'applicazione di questi modelli, che integrano misure di fluorescenza della clorofilla e consentono anche la rappresentazione di meccanismi complessi come l’NPQ. Tali modelli risultano particolarmente utili per identificare i parametri che hanno il maggiore impatto sulla produttività algale fornendo inoltre una guida per individuare quelle modifiche genetiche che hanno il maggiore potenziale impatto sulla produttività. Nella sezione D lo studio dei processi fotosintetici si espande ad altri organismi focalizzandosi in particolare sui meccanismi di regolazione della catena fotosintetica di trasposto degli elettroni. Questo studio si avvale dell'impiego di diverse tecniche spettroscopiche che ho messo a punto durante la mia tesi di dottorato. Nel primo lavoro riportato viene mostrato come l'introduzione di una mutazione mitocondriale nella microalga Chlamydomonas reinhardtii priva della proteina cloroplastica PGRL1 porti ad un recupero delle performance di crescita in condizioni di alta luce. Analisi fotosintetiche effettuate in queste cellule mutanti ha mostrato che la mutazione mitocondriale altera le reazioni di trasporto degli elettroni aumentando i pathways elettronici alternativi che coinvolgono il PSI e limitando fortemente l’attività del PSII. Questo lavoro dimostra come l'attività mitocondriale abbia un'influenza fondamentale sulla fotosintesi delle microalghe. Il secondo lavoro presentato si occupa di un importante meccanismo volto a modulare il flusso di eccitazione, le reazioni Mehler-like mediate dalle proteine Flavodiiron (FLV). Queste proteine sono state perse durante l'evoluzione delle piante terrestri, ma sono ancora presenti nelle piante non vascolari, come nel muschio Physcomitrella patens, l'organismo modello utilizzato per questo studio. Mutanti di P. patens deprivati della proteina FLV mostrano come quest’ultima abbia un ruolo di sink degli elettroni a valle del PSI. Misure di trasporto elettronico hanno dimostrato che le FLV svolgono un ruolo importante in particolare nei primi secondi dopo una rapida variazione dell'intensità luminosa, quando per alcuni secondi essi agiscono da principale sink degli elettroni provenienti dal PSI. Quando esposti ad una condizione di luce fluttuante i mutanti FLV mostrano fotosensibilità e inibizione del PSI, dimostrando il loro ruolo biologico come valvola di sicurezza in caso di sovrariduzione della catena fotosintetica. L’assenza delle FLV nei mutanti è in parte compensata da un aumento del flusso ciclico degli elettroni, suggerendo che quest’ultimo possa avere sostituito il ruolo biologico delle FLV nelle piante vascolari. Infine abbiamo analizzato l'andamento nel tempo delle risposte fisiologiche e morfologiche a diverse intensità luminose in Koliella antarctica, una microalga verde antartica isolata nel Mare di Ross. K. antarctica modula non solo la morfologia cellulare e il suo apparato fotosintetico tramite una risposta acclimatativa a lungo termine, ma mostra anche la capacità di rispondere rapidamente alle variazioni dell’intensità luminosa. La possibilità di attivare tali risposte è fondamentale per la sopravvivenza nel suo ambiente naturale estremo.
Investigation of mechanisms modulating photosynthetic efficiency in Nannochloropsis gaditana
MENEGHESSO, ANDREA
2016
Abstract
La fotosintesi ossigenica è un processo fondamentale per la vita sulla terra in quanto consente a piante e alghe di convertire la luce solare in energia chimica generando ossigeno molecolare come sottoprodotto. La luce può anche essere dannosa e quando è in eccesso può portare alla sovreccitazione dei fotosistemi e alla produzione di specie reattive dell'ossigeno (ROS) con un conseguente calo dell’efficienza fotosintetica. In un ambiente naturale estremamente dinamico gli organismi fotosintetici hanno evoluto meccanismi sofisticati in grado di modulare la loro efficienza per catturare e sfruttare al meglio la luce. Per esempio il cosiddetto quenching non fotochimico della fluorescenza (NPQ) agisce dissipando l’energia in eccesso sotto forma di calore ed è utilizzato come sistema di risposta a breve termine agi stress luminosi col fine di evitare danni ossidativi. Il carotenoide zeaxantina appartenente al ciclo delle xantofille partecipa attivamente a questa risposta di dissipazione termica mantenendo però anche un ruolo diretto nello scavenging dei ROS generati nella membrana tilacoidale. L’acclimatazione invece è un processo a lungo termine che agisce direttamente modellando la composizione dell'apparato fotosintetico in risposta all'intensità della luce ad esempio attraverso modifiche nella composizione proteica. I meccanismi di regolazione e protezione indotti dalla luce sono spesso legati anche a modulazioni dei flussi elettronici attraverso la membrana tilacoidale. La via principale per le reazioni alla luce della fotosintesi infatti, il flusso elettronico lineare, è in grado di modulare la sua attività a seconda della richiesta metabolica e può essere sostenuto anche da pathways elettronici alternativi che influenzano il gradiente tilacoidale e il rapporto ATP / NADPH. L'obiettivo generale di questo lavoro è quello di indagare i diversi meccanismi che modulano l'efficienza fotosintetica nella microalga Nannochloropsis gaditana al fine di aumentare la conoscenza ancora limitata di questa microalga e sfruttarla per ottimizzare l'efficienza fotosintetica in un ottica di coltivazione su larga scala, anche attraverso lo sviluppo modelli di calcolo. Gli strumenti spettroscopici sviluppati per districare la complessità dei meccanismi di regolazione della fotosintesi in Nannochloropsis sono stati applicati con successo anche per lo studio di altri organismi fotosintetici quali, Chlamydomonas reinhardtii, Physcomitrella patens e Koliella antarctica. Nannochloropsis gaditana è un'alga eucariotica del phylum heterokonts originata da un evento di endosimbiosi secondaria. Specie di questo gruppo hanno ricevuto una crescente attenzione nella comunità scientifica che riflette la loro potenziale applicazione nella produzione di biocarburanti. Nonostante questo le proprietà fotosintetici e fisiologiche di questi organismi rimangono ancora poco caratterizzate. La specie Nannochloropsis possiede un apparato fotosintetico peculiare contenente come pigmenti più abbondanti clorofilla a, violaxantina e vaucheriaxantina. La regolazione dell'apparato fotosintetico in questa microalga è stato approfondito nella Sezione B. Il nostro studio si è concentrato in primo luogo sulla risposta di acclimatazione in Nannochloropsis gaditana sottoposta a prolungate esposizioni a luce bassa e alta. L’illuminazione intensa induce una diminuzione del contenuto di clorofilla e delle dimensioni della taglia d’antenna del PSI e II. Cellule coltivate in alta luce mostrano anche un aumento del trasporto fotosintetico degli elettroni di pari passo con un maggior contributo da parte del trasporto alternativo ciclico. Anche quando esposte a intensità di luce estreme, le cellule di Nannochloropsis non attivano le risposte di foto-protezione, come ad esempio NPQ e il ciclo delle xantofille, in modo costitutivo. Al contrario, queste risposte rimangono a disposizione per l'attivazione in risposta a ulteriori modifiche dell’ illuminazione. Questi risultati suggeriscono che l’NPQ e il ciclo delle xantofille in Nannochloropsis gaditana giocano un ruolo esclusivo in risposta alle variazioni luminose a breve termine, ma solo un ruolo marginale nelle risposte al stress luminosi cronico. Al fine di esplorare ulteriormente la risposta a breve termine mediata dal ciclo delle xantofille è stato studiato l'effetto dell’ accumulo di zeaxantina nell'apparato fotosintetico di Nannochloropsis gaditana rivelando alcuni aspetti peculiari. E’ interessante notare che le molecole di zeaxantina si trovano ad essere sintetizzate costitutivamente in questa microalga, anche in condizioni di scarsa illuminazione in cui il ciclo delle xantofille non viene indotto. Inoltre questa xantofilla ha dimostrato di non avere un sito di legame specifico nelle diverse componenti proteiche dell’apparato fotosintetico e ha in aggiunta un forte effetto nella risposta di NPQ. L’effetto legato all’ NPQ sembra legato principalmente alla sintesi de novo di zeaxantina mentre le molecole già presenti nel’apparato fotosintetico sono coinvolte in un NPQ transitorio attivo solo nel primo minuto dopo la transizione luce-buio. La regolazione dell'apparato fotosintetico è stata valutata anche in N. salina in un sistema di coltivazione più compatibile con la produzione su larga scala, un fotobioreattore a flusso continuo. È interessante notare che modificare il tempo di permanenza mantenendo la stessa irradiazione influisce sulla concentrazione di biomassa e produce una risposta di acclimatazione molto simile a quella osservata in N. gaditana coltivata in sistema a batch, come precedentemente discusso. Questi risultati evidenziano l'importanza della concentrazione della biomassa e la sua connessione con la luce somministrata come parametro da ottimizzare per aumentare la produttività delle colture microalgali. L'indagine molecolare sui meccanismi alla base dell’utilizzo della luce in Nannochloropsis è il punto di partenza per lo sviluppo di modelli computazionali che mirano a simulare e prevedere il comportamento delle microalghe nell’ottica di ottimizzare la produttività in sistemi di coltivazione su larga scala. La Sezione C tratta dello sviluppo e dell'applicazione di questi modelli, che integrano misure di fluorescenza della clorofilla e consentono anche la rappresentazione di meccanismi complessi come l’NPQ. Tali modelli risultano particolarmente utili per identificare i parametri che hanno il maggiore impatto sulla produttività algale fornendo inoltre una guida per individuare quelle modifiche genetiche che hanno il maggiore potenziale impatto sulla produttività. Nella sezione D lo studio dei processi fotosintetici si espande ad altri organismi focalizzandosi in particolare sui meccanismi di regolazione della catena fotosintetica di trasposto degli elettroni. Questo studio si avvale dell'impiego di diverse tecniche spettroscopiche che ho messo a punto durante la mia tesi di dottorato. Nel primo lavoro riportato viene mostrato come l'introduzione di una mutazione mitocondriale nella microalga Chlamydomonas reinhardtii priva della proteina cloroplastica PGRL1 porti ad un recupero delle performance di crescita in condizioni di alta luce. Analisi fotosintetiche effettuate in queste cellule mutanti ha mostrato che la mutazione mitocondriale altera le reazioni di trasporto degli elettroni aumentando i pathways elettronici alternativi che coinvolgono il PSI e limitando fortemente l’attività del PSII. Questo lavoro dimostra come l'attività mitocondriale abbia un'influenza fondamentale sulla fotosintesi delle microalghe. Il secondo lavoro presentato si occupa di un importante meccanismo volto a modulare il flusso di eccitazione, le reazioni Mehler-like mediate dalle proteine Flavodiiron (FLV). Queste proteine sono state perse durante l'evoluzione delle piante terrestri, ma sono ancora presenti nelle piante non vascolari, come nel muschio Physcomitrella patens, l'organismo modello utilizzato per questo studio. Mutanti di P. patens deprivati della proteina FLV mostrano come quest’ultima abbia un ruolo di sink degli elettroni a valle del PSI. Misure di trasporto elettronico hanno dimostrato che le FLV svolgono un ruolo importante in particolare nei primi secondi dopo una rapida variazione dell'intensità luminosa, quando per alcuni secondi essi agiscono da principale sink degli elettroni provenienti dal PSI. Quando esposti ad una condizione di luce fluttuante i mutanti FLV mostrano fotosensibilità e inibizione del PSI, dimostrando il loro ruolo biologico come valvola di sicurezza in caso di sovrariduzione della catena fotosintetica. L’assenza delle FLV nei mutanti è in parte compensata da un aumento del flusso ciclico degli elettroni, suggerendo che quest’ultimo possa avere sostituito il ruolo biologico delle FLV nelle piante vascolari. Infine abbiamo analizzato l'andamento nel tempo delle risposte fisiologiche e morfologiche a diverse intensità luminose in Koliella antarctica, una microalga verde antartica isolata nel Mare di Ross. K. antarctica modula non solo la morfologia cellulare e il suo apparato fotosintetico tramite una risposta acclimatativa a lungo termine, ma mostra anche la capacità di rispondere rapidamente alle variazioni dell’intensità luminosa. La possibilità di attivare tali risposte è fondamentale per la sopravvivenza nel suo ambiente naturale estremo.File | Dimensione | Formato | |
---|---|---|---|
Meneghesso_Andrea_thesis.pdf
accesso aperto
Dimensione
12.29 MB
Formato
Adobe PDF
|
12.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/174412
URN:NBN:IT:UNIPD-174412