Dato un gruppo finito non ciclico $G$, un "ricoprimento" di $G$ è una famiglia $\mathcal{H}$ di sottogruppi propri di $G$ tale che $\bigcup_{H \in \mathcal{H}} H = G$. Un "ricoprimento normale" di $G$ è un ricoprimento $\mathcal{H}$ di $G$ tale che $gHg^{-1} \in \mathcal{H}$ per ogni $H \in \mathcal{H}$, $g \in G$. Definiamo "numero di ricoprimento" $\sigma(G)$ di $G$ come la più piccola cardinalità di un ricoprimento di $G$, e definiamo "numero di ricoprimento normale" $\gamma(G)$ di $G$ come il più piccolo numero di classi di coniugio di un ricoprimento normale di $G$. Se $G$ è ciclico poniamo $\sigma(G) = \gamma(G) = \infty$, con la convenzione che $n < \infty$ per ogni intero $n$. In questa tesi di dottorato studiamo questi due invarianti. Andrea Lucchini ed Eloisa Detomi hanno congetturato che se $G$ è un gruppo finito non abeliano tale che $\sigma(G) < \sigma(G/N)$ per ogni sottogruppo normale non banale $N$ di $G$ allora $G$ è "monolitico", cioè ammette un unico sottogruppo normale minimale. In questa tesi affrontiamo questa congettura e diamo una riduzione parziale al caso almost-simple. Questo richiede buone stime da sopra e da sotto per il numero di ricoprimento dei gruppi monolitici, che trattiamo strada facendo. Diamo una stima asintotica del numero di numeri di ricoprimento di gruppi monolitici $G$ con sottogruppo normale minimale $N$ non abeliano tale che $G/N$ è ciclico. Calcoliamo inoltre il numero di ricoprimento di un prodotto diretto di gruppi, e il suo numero di ricoprimento normale nel caso i fattori non ammettano quozienti abeliani isomorfi. Dimostriamo varie stime dall'alto per $\gamma(G)$ e affrontiamo la seguente congettura, formulata da me e Attila Maroti: se $G$ è un qualsiasi gruppo finito non ciclico e $p$ è il più grande divisore primo di $|G|$ allora $\gamma(G) \leq p+1$. Riduciamo la congettura al caso almost-simple e trattiamo i gruppi alterni, i gruppi sporadici e alcuni tra i gruppi lineari
Coverings of Groups by Subgroups
GARONZI, MARTINO
2013
Abstract
Dato un gruppo finito non ciclico $G$, un "ricoprimento" di $G$ è una famiglia $\mathcal{H}$ di sottogruppi propri di $G$ tale che $\bigcup_{H \in \mathcal{H}} H = G$. Un "ricoprimento normale" di $G$ è un ricoprimento $\mathcal{H}$ di $G$ tale che $gHg^{-1} \in \mathcal{H}$ per ogni $H \in \mathcal{H}$, $g \in G$. Definiamo "numero di ricoprimento" $\sigma(G)$ di $G$ come la più piccola cardinalità di un ricoprimento di $G$, e definiamo "numero di ricoprimento normale" $\gamma(G)$ di $G$ come il più piccolo numero di classi di coniugio di un ricoprimento normale di $G$. Se $G$ è ciclico poniamo $\sigma(G) = \gamma(G) = \infty$, con la convenzione che $n < \infty$ per ogni intero $n$. In questa tesi di dottorato studiamo questi due invarianti. Andrea Lucchini ed Eloisa Detomi hanno congetturato che se $G$ è un gruppo finito non abeliano tale che $\sigma(G) < \sigma(G/N)$ per ogni sottogruppo normale non banale $N$ di $G$ allora $G$ è "monolitico", cioè ammette un unico sottogruppo normale minimale. In questa tesi affrontiamo questa congettura e diamo una riduzione parziale al caso almost-simple. Questo richiede buone stime da sopra e da sotto per il numero di ricoprimento dei gruppi monolitici, che trattiamo strada facendo. Diamo una stima asintotica del numero di numeri di ricoprimento di gruppi monolitici $G$ con sottogruppo normale minimale $N$ non abeliano tale che $G/N$ è ciclico. Calcoliamo inoltre il numero di ricoprimento di un prodotto diretto di gruppi, e il suo numero di ricoprimento normale nel caso i fattori non ammettano quozienti abeliani isomorfi. Dimostriamo varie stime dall'alto per $\gamma(G)$ e affrontiamo la seguente congettura, formulata da me e Attila Maroti: se $G$ è un qualsiasi gruppo finito non ciclico e $p$ è il più grande divisore primo di $|G|$ allora $\gamma(G) \leq p+1$. Riduciamo la congettura al caso almost-simple e trattiamo i gruppi alterni, i gruppi sporadici e alcuni tra i gruppi lineariFile | Dimensione | Formato | |
---|---|---|---|
garonzi_martino_tesi.pdf
accesso aperto
Dimensione
638.46 kB
Formato
Adobe PDF
|
638.46 kB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/174849
URN:NBN:IT:UNIPD-174849