La conoscenza delle proprietà microstrutturali dei materiali cementizi gioca un ruolo fondamentale nel predire il loro comportamento macroscopico in termini di prestazioni e durabilità. Tuttavia, a causa dell’intrinseca complessità microstrutturale e chimica di tali materiali, un approccio multi disciplinare è spesso richiesto. La maggior parte delle tecniche sperimentali classiche come XRD, XRF o la porosimetria a mercurio (MIP) forniscono solamente informazioni complessive riguardo determinate proprietà (composizione mineralogica e chimica, porosità, etc.) ma non danno alcuna indicazione sulla loro reale distribuzione spaziale all’interno del campione studiato. Nel corso degli ultimi decenni, i moderni metodi sperimentali per l’analisi microstrutturale come la microscopia elettronica a scansione (SEM) hanno portato ad importanti avanzamenti delle nostre conoscenze sui complessi meccanismi che avvengono nel corso dell’idratazione del cemento. Tuttavia, l’impossibilità di accedere ad informazioni tridimensionali (3D) rappresenta la principale limitazione della tecnica SEM e degli altri metodi di imaging 2D. Inoltre, poiché la preparazione del campione è spesso piuttosto invasiva, la microstruttura del cemento può risultare completamente alterata. Per tali ragioni, si è reso necessario lo sviluppo di tecniche non distruttive per lo studio microstrutturale in 3D dei materiali. Oggigiorno, la micro-tomografia computerizzata a raggi X (X-μCT) fornisce uno strumento totalmente non invasivo per studiare in modo tridimensionale la struttura interna dei materiali, con una risoluzione spaziale che può raggiungere il livello sub-micrometrico quando vengono utilizzati i sistemi più avanzati. La X-μCT consente di ricostruire mappe in 3D delle variazioni del coefficiente di attenuazione lineare dei raggi X (μ) all’interno di un campione senza perturbarne la struttura. Lo scopo di questo progetto di ricerca è quello di verificare le potenzialità della X-μCT per lo studio microstrutturale di diversi aspetti di interesse nei materiali cementizi. Tra le principali tematiche che sono state affrontate vi sono l’evoluzione della microstruttura durante la presa e l’indurimento, gli effetti del rapporto acqua-cemento, il ruolo degli additivi superfluidificanti e le proprietà dello spazio poroso. I risultati ottenuti dalla X-μCT alla scala microscopica possono essere correlati con le corrispondenti proprietà microscopiche osservate nelle applicazioni reali. Al fine di confrontare le potenzialità delle due principali tipologie di strumenti per X-μCT, sono stati effettuati esperimenti utilizzando sia sistemi convenzionali da laboratorio sia sistemi da sincrotrone. Uno studio al sincrotrone sull’evoluzione del cemento nel corso degli stadi iniziali dell’idratazione è stato portato a termine con successo, ponendo l’attenzione sull’effetto dei superfluidificanti (cap. 4). L’elevata risoluzione spaziale ottenibile ha consentito di seguire l’evoluzione della porosità e della frazione di cemento anidro in funzione del tempo di idratazione. Nel capitolo 5, la X-μCT convenzionale da laboratorio è stata applicata allo studio di campioni di paste di cemento preparati a diverso rapporto acqua-cemento al fine di ottenere indicazioni sui parametri microstrutturali che determinano le variazioni delle resistenze meccaniche in campioni macroscopici al variare del contenuto d’acqua. Inoltre, le potenzialità di una tecnica sperimentale recentemente sviluppata (diffraction tomography, XRD-CT) sono state testate per la prima volta su campioni cementizi (cap. 6). La tecnica della XRD-CT, combinando i principi della micro-diffrazione a raggi X con quelli della ricostruzione tomografica, consente di mappare la distribuzione di determinate fasi cristalline o amorfe all’interno di un campione in una maniera del tutto non invasiva. In questo modo, una delle principali limitazioni della X-μCT legata alla scarsa sensibilità nei confronti di ridotte variazioni di assorbimento tra diverse fasi può essere superata. Nonostante l’analisi dei dati non sia semplice e richieda ulteriori sviluppi, i risultati preliminari presentati in questa tesi mostrano che alcune fasi, sia cristalline sia amorfe, che si sviluppano nel corso dell’idratazione del cemento (come ad esempio l’ettringite o il C-S-H), possono essere mappate con successo senza perturbare il sistema. Nell’ultima parte del lavoro è riportato un esempio pratico di applicazione della X-μCT. La tecnica tomografica è stata utilizzata per caratterizzare la porosità e la microstruttura di materiali cementizi granulari prodotti dal processo di solidificazione e stabilizzazione (S/S) di suoli contaminati da metalli pesanti. I risultati delle analisi di X-μCT sono stati poi combinati con quelli ottenuti usando altri metodi sperimentali classici (ad esempio MIP, test fisico-meccanici e di cessione) al fine di valutare le prestazioni e la compatibilità ambientale di un metodo innovativo di bonifica dei terreni inquinati.
APPLICATIONS OF X-RAY TOMOGRAPHIC TECHNIQUES TO THE STUDY OF CEMENT-BASED MATERIALS
PARISATTO, MATTEO
2011
Abstract
La conoscenza delle proprietà microstrutturali dei materiali cementizi gioca un ruolo fondamentale nel predire il loro comportamento macroscopico in termini di prestazioni e durabilità. Tuttavia, a causa dell’intrinseca complessità microstrutturale e chimica di tali materiali, un approccio multi disciplinare è spesso richiesto. La maggior parte delle tecniche sperimentali classiche come XRD, XRF o la porosimetria a mercurio (MIP) forniscono solamente informazioni complessive riguardo determinate proprietà (composizione mineralogica e chimica, porosità, etc.) ma non danno alcuna indicazione sulla loro reale distribuzione spaziale all’interno del campione studiato. Nel corso degli ultimi decenni, i moderni metodi sperimentali per l’analisi microstrutturale come la microscopia elettronica a scansione (SEM) hanno portato ad importanti avanzamenti delle nostre conoscenze sui complessi meccanismi che avvengono nel corso dell’idratazione del cemento. Tuttavia, l’impossibilità di accedere ad informazioni tridimensionali (3D) rappresenta la principale limitazione della tecnica SEM e degli altri metodi di imaging 2D. Inoltre, poiché la preparazione del campione è spesso piuttosto invasiva, la microstruttura del cemento può risultare completamente alterata. Per tali ragioni, si è reso necessario lo sviluppo di tecniche non distruttive per lo studio microstrutturale in 3D dei materiali. Oggigiorno, la micro-tomografia computerizzata a raggi X (X-μCT) fornisce uno strumento totalmente non invasivo per studiare in modo tridimensionale la struttura interna dei materiali, con una risoluzione spaziale che può raggiungere il livello sub-micrometrico quando vengono utilizzati i sistemi più avanzati. La X-μCT consente di ricostruire mappe in 3D delle variazioni del coefficiente di attenuazione lineare dei raggi X (μ) all’interno di un campione senza perturbarne la struttura. Lo scopo di questo progetto di ricerca è quello di verificare le potenzialità della X-μCT per lo studio microstrutturale di diversi aspetti di interesse nei materiali cementizi. Tra le principali tematiche che sono state affrontate vi sono l’evoluzione della microstruttura durante la presa e l’indurimento, gli effetti del rapporto acqua-cemento, il ruolo degli additivi superfluidificanti e le proprietà dello spazio poroso. I risultati ottenuti dalla X-μCT alla scala microscopica possono essere correlati con le corrispondenti proprietà microscopiche osservate nelle applicazioni reali. Al fine di confrontare le potenzialità delle due principali tipologie di strumenti per X-μCT, sono stati effettuati esperimenti utilizzando sia sistemi convenzionali da laboratorio sia sistemi da sincrotrone. Uno studio al sincrotrone sull’evoluzione del cemento nel corso degli stadi iniziali dell’idratazione è stato portato a termine con successo, ponendo l’attenzione sull’effetto dei superfluidificanti (cap. 4). L’elevata risoluzione spaziale ottenibile ha consentito di seguire l’evoluzione della porosità e della frazione di cemento anidro in funzione del tempo di idratazione. Nel capitolo 5, la X-μCT convenzionale da laboratorio è stata applicata allo studio di campioni di paste di cemento preparati a diverso rapporto acqua-cemento al fine di ottenere indicazioni sui parametri microstrutturali che determinano le variazioni delle resistenze meccaniche in campioni macroscopici al variare del contenuto d’acqua. Inoltre, le potenzialità di una tecnica sperimentale recentemente sviluppata (diffraction tomography, XRD-CT) sono state testate per la prima volta su campioni cementizi (cap. 6). La tecnica della XRD-CT, combinando i principi della micro-diffrazione a raggi X con quelli della ricostruzione tomografica, consente di mappare la distribuzione di determinate fasi cristalline o amorfe all’interno di un campione in una maniera del tutto non invasiva. In questo modo, una delle principali limitazioni della X-μCT legata alla scarsa sensibilità nei confronti di ridotte variazioni di assorbimento tra diverse fasi può essere superata. Nonostante l’analisi dei dati non sia semplice e richieda ulteriori sviluppi, i risultati preliminari presentati in questa tesi mostrano che alcune fasi, sia cristalline sia amorfe, che si sviluppano nel corso dell’idratazione del cemento (come ad esempio l’ettringite o il C-S-H), possono essere mappate con successo senza perturbare il sistema. Nell’ultima parte del lavoro è riportato un esempio pratico di applicazione della X-μCT. La tecnica tomografica è stata utilizzata per caratterizzare la porosità e la microstruttura di materiali cementizi granulari prodotti dal processo di solidificazione e stabilizzazione (S/S) di suoli contaminati da metalli pesanti. I risultati delle analisi di X-μCT sono stati poi combinati con quelli ottenuti usando altri metodi sperimentali classici (ad esempio MIP, test fisico-meccanici e di cessione) al fine di valutare le prestazioni e la compatibilità ambientale di un metodo innovativo di bonifica dei terreni inquinati.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Matteo_Parisatto_XXIII_ciclo.pdf
accesso aperto
Dimensione
25.42 MB
Formato
Adobe PDF
|
25.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/175036
URN:NBN:IT:UNIPD-175036