Il diabete mellito è una patologia cronica caratterizzata da disfunzioni della regolazione della concentrazione di glucosio nel sangue. Nel diabete di Tipo 1 il pancreas non produce l'ormone insulina, mentre nel diabete di Tipo 2 si verificano squilibri nella secrezione e nell'azione dell'insulina. Di conseguenza, spesso la concentrazione glicemica eccede le soglie di normalità (70-180 mg/dL), con complicazioni a breve e lungo termine. L'ipoglicemia (glicemia inferiore a 70 mg/dL) può risultare in alterazione delle capacità cognitive, cambiamenti d'umore, convulsioni e coma. L'iperglicemia (glicemia superiore a 180 mg/dL) predispone, nel lungo termine, a patologie invalidanti, come neuropatie, nefropatie, retinopatie e piede diabetico. L'obiettivo della terapia convenzionale del diabete è il mantenimento della glicemia nell'intervallo di normalità regolando la dieta, la terapia insulinica e l'esercizio fisico in base a 4-5 monitoraggi giornalieri della glicemia, (Self-Monitoring of Blood Glucose, SMBG), effettuati dal paziente stesso usando un dispositivo pungidito, portabile e minimamente invasivo. Negli ultimi 15 anni si sono aperti nuovi orizzonti nel trattamento del diabete, grazie all'introduzione, nella ricerca clinica, di sensori minimamente invasivi (Continuous Glucose Monitoring, CGM) capaci di misurare la glicemia nel sottocute in modo quasi continuo (ovvero con una misurazione ogni 1-5 min) per parecchi giorni consecutivi (dai 7 ai 10 giorni). I sensori CGM permettono di monitorare le dinamiche glicemiche in modo più fine delle misurazioni SMBG e le serie temporali di concentrazione glicemica possono essere utilizzate sia retrospettivamente, per esempio per ottimizzare la terapia di controllo metabolico, sia prospettivamente in tempo reale, per esempio per generare segnali di allarme quando la concentrazione glicemica oltrepassa le soglie di normalità o nel “pancreas artificiale”. Per quanto concerne le applicazioni in tempo reale, poter prevenire gli eventi critici sarebbe chiaramente più attraente che semplicemente individuarli, contestualmente al loro verificarsi. Ciò sarebbe fattibile se si conoscesse la concentrazione glicemia futura con circa 30-45 min di anticipo. La natura quasi continua del segnale CGM rende possibile l'uso di algoritmi predittivi che possono, potenzialmente, permettere ai pazienti diabetici di ottimizzare le decisioni terapeutiche sulla base della glicemia futura, invece che attuale, dando loro l'opportunità di limitare l'impatto di eventi pericolosi per la salute, se non di evitarli. Dopo l'introduzione nella pratica clinica dei dispositivi CGM, in letteratura, sono stati proposti vari metodi per la predizione a breve termine della glicemia. Si tratta principalmente di algoritmi basati su modelli di serie temporali e la maggior parte di essi utilizza solamente la storia del segnale CGM come ingresso. Tuttavia, le dinamiche glicemiche sono determinate da molti fattori, come la quantità di carboidrati ingeriti durante i pasti, la somministrazione di farmaci, compresa l'insulina, l'attività fisica, lo stress, le emozioni. Inoltre, la variabilità inter- e intra- individuale è elevata. Per questi motivi, predire l'andamento glicemico futuro è difficile e stimolante e c'è margine di miglioramento dei risultati pubblicati finora in letteratura. Lo scopo di questa tesi è investigare la possibilità di predire la concentrazione glicemica futura, nel breve termine, utilizzando modelli basati su reti neurali (Neural Network, NN) e sfruttando, oltre alla storia del segnale CGM, altre informazioni disponibili. Nel dettaglio, inizialmente svilupperemo un nuovo modello che utilizza, come ingressi, il segnale CGM e informazioni relative ai pasti ingeriti, (istante temporale e quantità di carboidrati). L'algoritmo predittivo sarà basato su una NN di tipo feedforward, in parallelo ad un modello lineare. I risultati sono promettenti: il modello è superiore ad algoritmi stato dell'arte ampiamente utilizzati, la predizione è accurata e il guadagno temporale è soddisfacente. Successivamente proporremo un nuovo modello basato su una differente architettura di NN, ovvero una “jump NN”, che fonde i benefici di una NN di tipo feedforward e di un algoritmo lineare, ottenendo risultati simili a quelli del modello precedentemente proposto, nonostante la sua struttura notevolmente più semplice. Per completare l'analisi, valuteremo l'inclusione, tra gli ingressi della jump NN, di segnali ottenuti sfruttando informazioni sulla terapia insulinica (istante temporale e dose dei boli iniettati) e valuteremo l'importanza e l'influenza relativa di ogni ingresso nella determinazione del valore glicemico predetto dalla NN, sviluppando un'originale analisi di sensitività. Tutti i modelli proposti saranno valutati su dati reali di pazienti diabetici di Tipo 1, raccolti durante il progetto Europeo FP7 (7th Framework Programme, Settimo Programma Quadro) DIAdvisor. Per valutare l'utilità clinica della predizione e il miglioramento della gestione della terapia diabetica proporremo una nuova strategia per la quantificazione, in simulazione, della riduzione del numero e della gravità degli eventi ipoglicemici nel caso gli allarmi, e la relativa terapia, siano determinati sulla base della concentrazione glicemica predetta, utilizzando il nostro algoritmo basato su NN, invece che su quella misurata dal sensore CGM. Infine, investigheremo, in modo preliminare, la possibilità di includere, tra gli ingressi della NN, ulteriori informazioni, come l'attività fisica. La tesi è organizzata come descritto in seguito. Il Capitolo 1 introduce la patologia diabetica e le attuali tecnologie CGM, presenta le tecniche stato dell'arte utilizzate per la predizione a breve termine della glicemia di pazienti diabetici e specifica gli scopi e le innovazioni della presente tesi. Il Capitolo 2 introduce le basi teoriche delle NN e specifica i dettagli tecnici che abbiamo scelto di adottare per lo sviluppo e l'implementazione di tutte le NN proposte in seguito. Il Capitolo 3 descrive il primo modello proposto, basato su una NN in parallelo a un algoritmo lineare. Il Capitolo 4 presenta una struttura alternativa più semplice, basata su una jump NN, e dimostra la sua equivalenza, in termini di prestazioni, con il modello precedentemente proposto. Il Capitolo 5 apporta ulteriori miglioramenti alla jump NN, aggiungendo nuovi ingressi e investigando la loro utilità effettiva attraverso un'analisi di sensitività. Il Capitolo 6 indica possibili sviluppi futuri, come l'inclusione di informazioni sull'attività fisica, presentando anche un'analisi preliminare. Infine, il Capitolo 7 applica la NN per la generazione di allarmi preventivi per l'ipoglicemia, valutando, in simulazione, il miglioramento della gestione del diabete. Alcuni commenti e osservazioni concludono la tesi.

Online Glucose Prediction in Type-1 Diabetes by Neural Network Models

ZECCHIN, CHIARA
2014

Abstract

Il diabete mellito è una patologia cronica caratterizzata da disfunzioni della regolazione della concentrazione di glucosio nel sangue. Nel diabete di Tipo 1 il pancreas non produce l'ormone insulina, mentre nel diabete di Tipo 2 si verificano squilibri nella secrezione e nell'azione dell'insulina. Di conseguenza, spesso la concentrazione glicemica eccede le soglie di normalità (70-180 mg/dL), con complicazioni a breve e lungo termine. L'ipoglicemia (glicemia inferiore a 70 mg/dL) può risultare in alterazione delle capacità cognitive, cambiamenti d'umore, convulsioni e coma. L'iperglicemia (glicemia superiore a 180 mg/dL) predispone, nel lungo termine, a patologie invalidanti, come neuropatie, nefropatie, retinopatie e piede diabetico. L'obiettivo della terapia convenzionale del diabete è il mantenimento della glicemia nell'intervallo di normalità regolando la dieta, la terapia insulinica e l'esercizio fisico in base a 4-5 monitoraggi giornalieri della glicemia, (Self-Monitoring of Blood Glucose, SMBG), effettuati dal paziente stesso usando un dispositivo pungidito, portabile e minimamente invasivo. Negli ultimi 15 anni si sono aperti nuovi orizzonti nel trattamento del diabete, grazie all'introduzione, nella ricerca clinica, di sensori minimamente invasivi (Continuous Glucose Monitoring, CGM) capaci di misurare la glicemia nel sottocute in modo quasi continuo (ovvero con una misurazione ogni 1-5 min) per parecchi giorni consecutivi (dai 7 ai 10 giorni). I sensori CGM permettono di monitorare le dinamiche glicemiche in modo più fine delle misurazioni SMBG e le serie temporali di concentrazione glicemica possono essere utilizzate sia retrospettivamente, per esempio per ottimizzare la terapia di controllo metabolico, sia prospettivamente in tempo reale, per esempio per generare segnali di allarme quando la concentrazione glicemica oltrepassa le soglie di normalità o nel “pancreas artificiale”. Per quanto concerne le applicazioni in tempo reale, poter prevenire gli eventi critici sarebbe chiaramente più attraente che semplicemente individuarli, contestualmente al loro verificarsi. Ciò sarebbe fattibile se si conoscesse la concentrazione glicemia futura con circa 30-45 min di anticipo. La natura quasi continua del segnale CGM rende possibile l'uso di algoritmi predittivi che possono, potenzialmente, permettere ai pazienti diabetici di ottimizzare le decisioni terapeutiche sulla base della glicemia futura, invece che attuale, dando loro l'opportunità di limitare l'impatto di eventi pericolosi per la salute, se non di evitarli. Dopo l'introduzione nella pratica clinica dei dispositivi CGM, in letteratura, sono stati proposti vari metodi per la predizione a breve termine della glicemia. Si tratta principalmente di algoritmi basati su modelli di serie temporali e la maggior parte di essi utilizza solamente la storia del segnale CGM come ingresso. Tuttavia, le dinamiche glicemiche sono determinate da molti fattori, come la quantità di carboidrati ingeriti durante i pasti, la somministrazione di farmaci, compresa l'insulina, l'attività fisica, lo stress, le emozioni. Inoltre, la variabilità inter- e intra- individuale è elevata. Per questi motivi, predire l'andamento glicemico futuro è difficile e stimolante e c'è margine di miglioramento dei risultati pubblicati finora in letteratura. Lo scopo di questa tesi è investigare la possibilità di predire la concentrazione glicemica futura, nel breve termine, utilizzando modelli basati su reti neurali (Neural Network, NN) e sfruttando, oltre alla storia del segnale CGM, altre informazioni disponibili. Nel dettaglio, inizialmente svilupperemo un nuovo modello che utilizza, come ingressi, il segnale CGM e informazioni relative ai pasti ingeriti, (istante temporale e quantità di carboidrati). L'algoritmo predittivo sarà basato su una NN di tipo feedforward, in parallelo ad un modello lineare. I risultati sono promettenti: il modello è superiore ad algoritmi stato dell'arte ampiamente utilizzati, la predizione è accurata e il guadagno temporale è soddisfacente. Successivamente proporremo un nuovo modello basato su una differente architettura di NN, ovvero una “jump NN”, che fonde i benefici di una NN di tipo feedforward e di un algoritmo lineare, ottenendo risultati simili a quelli del modello precedentemente proposto, nonostante la sua struttura notevolmente più semplice. Per completare l'analisi, valuteremo l'inclusione, tra gli ingressi della jump NN, di segnali ottenuti sfruttando informazioni sulla terapia insulinica (istante temporale e dose dei boli iniettati) e valuteremo l'importanza e l'influenza relativa di ogni ingresso nella determinazione del valore glicemico predetto dalla NN, sviluppando un'originale analisi di sensitività. Tutti i modelli proposti saranno valutati su dati reali di pazienti diabetici di Tipo 1, raccolti durante il progetto Europeo FP7 (7th Framework Programme, Settimo Programma Quadro) DIAdvisor. Per valutare l'utilità clinica della predizione e il miglioramento della gestione della terapia diabetica proporremo una nuova strategia per la quantificazione, in simulazione, della riduzione del numero e della gravità degli eventi ipoglicemici nel caso gli allarmi, e la relativa terapia, siano determinati sulla base della concentrazione glicemica predetta, utilizzando il nostro algoritmo basato su NN, invece che su quella misurata dal sensore CGM. Infine, investigheremo, in modo preliminare, la possibilità di includere, tra gli ingressi della NN, ulteriori informazioni, come l'attività fisica. La tesi è organizzata come descritto in seguito. Il Capitolo 1 introduce la patologia diabetica e le attuali tecnologie CGM, presenta le tecniche stato dell'arte utilizzate per la predizione a breve termine della glicemia di pazienti diabetici e specifica gli scopi e le innovazioni della presente tesi. Il Capitolo 2 introduce le basi teoriche delle NN e specifica i dettagli tecnici che abbiamo scelto di adottare per lo sviluppo e l'implementazione di tutte le NN proposte in seguito. Il Capitolo 3 descrive il primo modello proposto, basato su una NN in parallelo a un algoritmo lineare. Il Capitolo 4 presenta una struttura alternativa più semplice, basata su una jump NN, e dimostra la sua equivalenza, in termini di prestazioni, con il modello precedentemente proposto. Il Capitolo 5 apporta ulteriori miglioramenti alla jump NN, aggiungendo nuovi ingressi e investigando la loro utilità effettiva attraverso un'analisi di sensitività. Il Capitolo 6 indica possibili sviluppi futuri, come l'inclusione di informazioni sull'attività fisica, presentando anche un'analisi preliminare. Infine, il Capitolo 7 applica la NN per la generazione di allarmi preventivi per l'ipoglicemia, valutando, in simulazione, il miglioramento della gestione del diabete. Alcuni commenti e osservazioni concludono la tesi.
27-gen-2014
Inglese
monitoraggio continuo della glicemia, analisi nonlineare del segnale; predizione; glicemia; modellistica non lineari; diabete di tipo 1; rete neurale; glucosio; sensore CGM; Continuous Glucose Monitoring; nonlinear signal processing; forecast; glycemia; nonlinear modelling; type 1 diabetes; neural network; glucose; prediction; CGM sensor
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
PhD_Zecchin.pdf

accesso aperto

Dimensione 4.27 MB
Formato Adobe PDF
4.27 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/175114
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-175114