The Internet of Things (IoT) evolution is gradually reshaping the physical world into smart environments that involve a large number of interconnected resource-constrained devices which collect, process, and exchange enormous amount of (more or less) sensitive information. With the increasing number of interconnected IoT devices and their capabilities to control the environment, IoT systems are becoming a prominent target of sophisticated cyberattacks. To deal with the expanding attack surface, IoT systems require adequate security mechanisms to verify the reliability of IoT devices. Remote attestation protocols have recently gained wide attention in IoT systems as valuable security mechanisms that detect the adversarial presence and guarantee the legitimate state of IoT devices. Various attestation schemes have been proposed to optimize the effectiveness and efficiency of remote attestation protocols of a single IoT device or a group of IoT devices. Nevertheless, some cyber attacks remain undetected by current attestation methods, and attestation protocols still introduce non-negligible computational overheads for resource-constrained devices. This thesis presents the following new contributions in the area of remote attestation protocols that verify the trustworthiness of IoT devices. First, this thesis shows the limitations of existing attestation protocols against runtime attacks which, by compromising a device, may maliciously influence the operation of other genuine devices that interact with the compromised one. To detect such an attack, this thesis introduces the service perspective in remote attestation and presents a synchronous remote attestation protocol for distributed IoT services. Second, this thesis designs, implements and evaluates a novel remote attestation scheme that releases the constraint of synchronous interaction between devices and enables the attestation of asynchronous distributed IoT services. The proposed scheme also attests asynchronously a group of IoT devices, without interrupting the regular operations of all the devices at the same time. Third, this thesis proposes a new approach that aims to reduce the interruption time of the regular work that remote attestation introduces in an IoT device. This approach intends to decrease the computational overhead of attestation by allowing an IoT device to securely offload the attestation process to a cloud service, which then performs attestation independently on the cloud, on behalf of the IoT device.
Remote attestation to ensure the security of future Internet of Things services
DUSHKU, EDLIRA
2020
Abstract
The Internet of Things (IoT) evolution is gradually reshaping the physical world into smart environments that involve a large number of interconnected resource-constrained devices which collect, process, and exchange enormous amount of (more or less) sensitive information. With the increasing number of interconnected IoT devices and their capabilities to control the environment, IoT systems are becoming a prominent target of sophisticated cyberattacks. To deal with the expanding attack surface, IoT systems require adequate security mechanisms to verify the reliability of IoT devices. Remote attestation protocols have recently gained wide attention in IoT systems as valuable security mechanisms that detect the adversarial presence and guarantee the legitimate state of IoT devices. Various attestation schemes have been proposed to optimize the effectiveness and efficiency of remote attestation protocols of a single IoT device or a group of IoT devices. Nevertheless, some cyber attacks remain undetected by current attestation methods, and attestation protocols still introduce non-negligible computational overheads for resource-constrained devices. This thesis presents the following new contributions in the area of remote attestation protocols that verify the trustworthiness of IoT devices. First, this thesis shows the limitations of existing attestation protocols against runtime attacks which, by compromising a device, may maliciously influence the operation of other genuine devices that interact with the compromised one. To detect such an attack, this thesis introduces the service perspective in remote attestation and presents a synchronous remote attestation protocol for distributed IoT services. Second, this thesis designs, implements and evaluates a novel remote attestation scheme that releases the constraint of synchronous interaction between devices and enables the attestation of asynchronous distributed IoT services. The proposed scheme also attests asynchronously a group of IoT devices, without interrupting the regular operations of all the devices at the same time. Third, this thesis proposes a new approach that aims to reduce the interruption time of the regular work that remote attestation introduces in an IoT device. This approach intends to decrease the computational overhead of attestation by allowing an IoT device to securely offload the attestation process to a cloud service, which then performs attestation independently on the cloud, on behalf of the IoT device.File | Dimensione | Formato | |
---|---|---|---|
Tesi_dottorato_Dushku.pdf
accesso aperto
Dimensione
3.19 MB
Formato
Adobe PDF
|
3.19 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/175222
URN:NBN:IT:UNIROMA1-175222