Le cellule eucariote sono caratterizzate da un complesso sistema di membrane, che offre svariate compartimentazioni con diverse condizioni chimico-fisiche. Se da una parte tale sistema permette la realizzazione di un’ampia gamma di processi biochimici, dall’altra richiede un altrettanto complesso sistema di interscambio atto al suo mantenimento. Tale interscambio è assicurato dal trafficking di vescicole che originano da un compartimento donatore e riversano il loro contenuto in un compartimento accettore attraverso un processo che richiede la fusione delle membrane lipidiche. Tale processo si fonda sull’organizzazione di complessi macromolecolari a cui contribuiscono varie famiglie proteiche ben conservate attraverso l’evoluzione eucariotica. La famiglia delle SNARE è una di queste. Le SNAREs sono considerate i motori della fusione di membrane. La loro capacità di formare complessi specifici in trans tra le due memrane su cui risiedono fornisce il contributo energetico necessario a indurre la fusione degli strati lipidici. Tali complessi consistono in un intreccio di quattro eliche chiamate SNARE motifs, domini di circa 60-70 amino acidi che definiscono tutte le SNAREs. Oltre allo SNARE motif, le SNAREs contengono spesso domini accessori a funzione regolativa. Uno di questi è il Longin Domain (LD). Il LD non è limitato alle sole SNAREs e anzi si ritrova in altre famiglie proteiche tutte coinvolte in processi molecolari riguardanti il ciclo vitale di una vescicola. Nelle SNAREs, il LD definisce una famiglia chiamata Longins, suddivisa a sua volta nelle proteine Ykt6, Sec22b e VAMP7. Il LD consiste di circa 120 aminoacidi organizzati in una struttura spaziale globulare che comprende un piano di cinque foglietti ? (?1- ?5), complessati da un’alfa elica (?1) su un lato e da altre due eliche (?2-?3) sull’altro. In Ykt6 e Sec22b si è dimostrata la possibilità che il LD si ripieghi sullo SNARE motif e lo coordini su una sua superficie idrofobica compresa tra ?1 e ?3. Questo meccanismo si è dimostrato in grado di prevenire la formazione di complessi SNARE non specifici. Tuttavia ben poco si conosce ad oggi sulla natura di questa interazione in termini dinamici, a differenza di quanto invece si sa per un analogo meccanismo osservato nella famiglia SNARE delle Sintaxine. In altri temrini non è dato sapere se nelle Longine questo meccanismo implica una conformazione stabilmente “chiusa” di LD e SNARE, o se piuttosto esso si realizza come un equilibrio dinamico tra conformazioni aperte e chiuse. Una serie di motivi, tra cui l’assenza di dati diretti per questo fenomeno in VAMP7 e la possibilità di usufruire di sue varianti naturali, ci hanno spinto a scegliere VAMP7 come sistema modello per fornire le risposte ai suddetti interrogativi. I nostri dati suggeriscono per le Longine una conformazione stabilmente chiusa, ma non omogenea e capace di cambi conformazionali molto rapidi. Questo lavoro complementa bene quanto già noto per le sintaxine e fornisce dunque la possibilità di comprendere meglio i meccanismi regolativi gneralmente adottati nella fusione vescicolare.

VAMP7: a model system to study the Longin Domain-SNARE motif.

VIVONA, SANDRO
2009

Abstract

Le cellule eucariote sono caratterizzate da un complesso sistema di membrane, che offre svariate compartimentazioni con diverse condizioni chimico-fisiche. Se da una parte tale sistema permette la realizzazione di un’ampia gamma di processi biochimici, dall’altra richiede un altrettanto complesso sistema di interscambio atto al suo mantenimento. Tale interscambio è assicurato dal trafficking di vescicole che originano da un compartimento donatore e riversano il loro contenuto in un compartimento accettore attraverso un processo che richiede la fusione delle membrane lipidiche. Tale processo si fonda sull’organizzazione di complessi macromolecolari a cui contribuiscono varie famiglie proteiche ben conservate attraverso l’evoluzione eucariotica. La famiglia delle SNARE è una di queste. Le SNAREs sono considerate i motori della fusione di membrane. La loro capacità di formare complessi specifici in trans tra le due memrane su cui risiedono fornisce il contributo energetico necessario a indurre la fusione degli strati lipidici. Tali complessi consistono in un intreccio di quattro eliche chiamate SNARE motifs, domini di circa 60-70 amino acidi che definiscono tutte le SNAREs. Oltre allo SNARE motif, le SNAREs contengono spesso domini accessori a funzione regolativa. Uno di questi è il Longin Domain (LD). Il LD non è limitato alle sole SNAREs e anzi si ritrova in altre famiglie proteiche tutte coinvolte in processi molecolari riguardanti il ciclo vitale di una vescicola. Nelle SNAREs, il LD definisce una famiglia chiamata Longins, suddivisa a sua volta nelle proteine Ykt6, Sec22b e VAMP7. Il LD consiste di circa 120 aminoacidi organizzati in una struttura spaziale globulare che comprende un piano di cinque foglietti ? (?1- ?5), complessati da un’alfa elica (?1) su un lato e da altre due eliche (?2-?3) sull’altro. In Ykt6 e Sec22b si è dimostrata la possibilità che il LD si ripieghi sullo SNARE motif e lo coordini su una sua superficie idrofobica compresa tra ?1 e ?3. Questo meccanismo si è dimostrato in grado di prevenire la formazione di complessi SNARE non specifici. Tuttavia ben poco si conosce ad oggi sulla natura di questa interazione in termini dinamici, a differenza di quanto invece si sa per un analogo meccanismo osservato nella famiglia SNARE delle Sintaxine. In altri temrini non è dato sapere se nelle Longine questo meccanismo implica una conformazione stabilmente “chiusa” di LD e SNARE, o se piuttosto esso si realizza come un equilibrio dinamico tra conformazioni aperte e chiuse. Una serie di motivi, tra cui l’assenza di dati diretti per questo fenomeno in VAMP7 e la possibilità di usufruire di sue varianti naturali, ci hanno spinto a scegliere VAMP7 come sistema modello per fornire le risposte ai suddetti interrogativi. I nostri dati suggeriscono per le Longine una conformazione stabilmente chiusa, ma non omogenea e capace di cambi conformazionali molto rapidi. Questo lavoro complementa bene quanto già noto per le sintaxine e fornisce dunque la possibilità di comprendere meglio i meccanismi regolativi gneralmente adottati nella fusione vescicolare.
1-feb-2009
Inglese
trafficking vesicle longin domain SNARE fusion dynamic NMR interaction X-ray crystallography light scattering nuclear magnetic resonance HSQC backbone assignment membrane VAMP7
Università degli studi di Padova
60
File in questo prodotto:
File Dimensione Formato  
SandroVivona_PhDthesis_XXIciclo_BIOCH-BIOTEC.pdf

accesso aperto

Dimensione 2.65 MB
Formato Adobe PDF
2.65 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/175283
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-175283