La perdita dell’udito è la forma più comune di disabilità sensoriale: circa un bambino su 1000, infatti, è affetto alla nascita da sordità congenita profonda. La sordità non sindromica (DFNB1) è una malattia ereditaria con un fenotipo di sordità che va da lieve a grave, causata da mutazioni nei geni GJB2 (che codifica la proteina connessina26) e GJB6 (che codifica la connessina30). Canali giunzionali formati prevalentemente da queste due proteine accoppiano le cellule non sensoriali (cellule di sostegno e cellule epiteliali) della coclea dei mammiferi, le quali formano vasti sincizi funzionali. Studi precedenti hanno dimostrato che l’accoppiamento elettrico e metabolico mediato da canali giunzionali è fondamentale per lo sviluppo e il mantenimento dell’udito. Tuttavia, nonostante il gran numero di studi condotti in sistemi di espressione, mancano stime precise del grado di accoppiamento e delle sue alterazioni in condizioni DFNB1. In questo lavoro di tesi, sono state combinate registrazioni ottiche su larga scala , registrazioni elettrofisiologiche su singola cellula e simulazioni al computer per chiarire i meccanismi che sono alla base della comunicazione intercellulare nelle cellule cocleari non sensoriali in topi giovani (prima settimana post-natale) . In primo luogo, abbiamo sviluppato una nuova tecnica basata sull’imaging del potenziale di membrana cellulare per mappare l’estensione e il grado di accoppiamento elettrico nelle reti cellulari non sensoriali della coclea in via di sviluppo . Abbiamo anche quantificato con precisione la riduzione dell’accoppiamento elettrico in colture organotipiche cocleari da topi transgenici con difetti uditivi causati dall’assenza o da mutazioni della connessina30 rispetto ad animali wild type. Confrontando i nostri risultati sperimentali con simulazioni numeriche , abbiamo stimato che le cellule non sensoriali della coclea nel topo sono già ben accoppiate nella prima settimana post-natale da ben ∼ 1500 canali per ogni coppia di cellule. Nelle colture di pari età provenienti da topi connexin30(T5M/T5M) e connexin30(−/−), la conduttanza giunzionale è ridotta rispettivamente del 14% e del 91% , e questi dati sono in accordo con l’aumento delle soglie uditive mostrato da questi animali nella fase adulta . Oltre a fornire l’accoppiamento elettrico , é stato dimostrato che i canali giunzionali dell’orecchio interno partecipano alla segnalazione Ca2+ intracellulare dipendente dall’ATP e dall’IP3, e l’alterazione di questi meccanismi di segnalazione nella coclea postnatale é stata collegata alla compromissione dell’acquisizione dell’udito. Abbiamo quindi eseguito esperimenti di imaging dello ione Ca2+ volti a chiarire i meccanismi alla base della generazione e propagazione intercellulare dei segnali Ca2+ mediati da ATP nelle cellule non sensoriali della coclea. Abbiamo determinato che le oscillazioni Ca2+ dipendenti dall’ATP e dall’IP3 nelle cellule non sensoriali cocleari possono verificarsi in presenza di una concentrazione intracellulare di IP3 costante. Abbiamo poi combinato le informazioni raccolte attraverso i due diversi approcci sperimentali in un modello matematico che (i) riproduce correttamente la velocità e il range di propagazione delle onde Ca2+ intercellulari e (ii) indica che l’inizio e il culmine delle oscillazioni Ca2+ sono contrassegnati da biforcazioni di Hopf supercritiche a concentrazioni di ATP di ∼ 100 nM e ∼ 1 μM, rispettivamente . Infine , abbiamo studiato la relazione tra transienti Ca2+ spontanei delle cellule non sensoriali e i potenziali d’azione spontanei delle cellule ciliate interne. I nostri risultati preliminari suggeriscono che i transienti Ca2+ delle cellule non sensoriali potrebbero avere un effetto modulatorio sull’attività elettrica spontanea , che è intrinsecamente generata nelle cellule ciliate interne.
Quantitative estimate of biochemical and electrical intercellular coupling in the developing cochlea of wild type and DFNB1 mouse models
CERIANI, FEDERICO
2014
Abstract
La perdita dell’udito è la forma più comune di disabilità sensoriale: circa un bambino su 1000, infatti, è affetto alla nascita da sordità congenita profonda. La sordità non sindromica (DFNB1) è una malattia ereditaria con un fenotipo di sordità che va da lieve a grave, causata da mutazioni nei geni GJB2 (che codifica la proteina connessina26) e GJB6 (che codifica la connessina30). Canali giunzionali formati prevalentemente da queste due proteine accoppiano le cellule non sensoriali (cellule di sostegno e cellule epiteliali) della coclea dei mammiferi, le quali formano vasti sincizi funzionali. Studi precedenti hanno dimostrato che l’accoppiamento elettrico e metabolico mediato da canali giunzionali è fondamentale per lo sviluppo e il mantenimento dell’udito. Tuttavia, nonostante il gran numero di studi condotti in sistemi di espressione, mancano stime precise del grado di accoppiamento e delle sue alterazioni in condizioni DFNB1. In questo lavoro di tesi, sono state combinate registrazioni ottiche su larga scala , registrazioni elettrofisiologiche su singola cellula e simulazioni al computer per chiarire i meccanismi che sono alla base della comunicazione intercellulare nelle cellule cocleari non sensoriali in topi giovani (prima settimana post-natale) . In primo luogo, abbiamo sviluppato una nuova tecnica basata sull’imaging del potenziale di membrana cellulare per mappare l’estensione e il grado di accoppiamento elettrico nelle reti cellulari non sensoriali della coclea in via di sviluppo . Abbiamo anche quantificato con precisione la riduzione dell’accoppiamento elettrico in colture organotipiche cocleari da topi transgenici con difetti uditivi causati dall’assenza o da mutazioni della connessina30 rispetto ad animali wild type. Confrontando i nostri risultati sperimentali con simulazioni numeriche , abbiamo stimato che le cellule non sensoriali della coclea nel topo sono già ben accoppiate nella prima settimana post-natale da ben ∼ 1500 canali per ogni coppia di cellule. Nelle colture di pari età provenienti da topi connexin30(T5M/T5M) e connexin30(−/−), la conduttanza giunzionale è ridotta rispettivamente del 14% e del 91% , e questi dati sono in accordo con l’aumento delle soglie uditive mostrato da questi animali nella fase adulta . Oltre a fornire l’accoppiamento elettrico , é stato dimostrato che i canali giunzionali dell’orecchio interno partecipano alla segnalazione Ca2+ intracellulare dipendente dall’ATP e dall’IP3, e l’alterazione di questi meccanismi di segnalazione nella coclea postnatale é stata collegata alla compromissione dell’acquisizione dell’udito. Abbiamo quindi eseguito esperimenti di imaging dello ione Ca2+ volti a chiarire i meccanismi alla base della generazione e propagazione intercellulare dei segnali Ca2+ mediati da ATP nelle cellule non sensoriali della coclea. Abbiamo determinato che le oscillazioni Ca2+ dipendenti dall’ATP e dall’IP3 nelle cellule non sensoriali cocleari possono verificarsi in presenza di una concentrazione intracellulare di IP3 costante. Abbiamo poi combinato le informazioni raccolte attraverso i due diversi approcci sperimentali in un modello matematico che (i) riproduce correttamente la velocità e il range di propagazione delle onde Ca2+ intercellulari e (ii) indica che l’inizio e il culmine delle oscillazioni Ca2+ sono contrassegnati da biforcazioni di Hopf supercritiche a concentrazioni di ATP di ∼ 100 nM e ∼ 1 μM, rispettivamente . Infine , abbiamo studiato la relazione tra transienti Ca2+ spontanei delle cellule non sensoriali e i potenziali d’azione spontanei delle cellule ciliate interne. I nostri risultati preliminari suggeriscono che i transienti Ca2+ delle cellule non sensoriali potrebbero avere un effetto modulatorio sull’attività elettrica spontanea , che è intrinsecamente generata nelle cellule ciliate interne.File | Dimensione | Formato | |
---|---|---|---|
Ceriani_Federico_tesi.pdf
accesso aperto
Dimensione
30.68 MB
Formato
Adobe PDF
|
30.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/175319
URN:NBN:IT:UNIPD-175319