In questa tesi nanostrutture plasmoniche innovative sono state studiate sotto molteplici aspetti, a partire dalla sintesi fino alla caratterizzazione e alla modellizazione ad elementi finiti. L’attenzione è stata focalizzata su due tipi di nanostrutture ordinate: (i) quelle che mostrano invarianza traslazionale bidimensionale (2D) e (ii) quelle che hanno autosimilarità e carattere frattale. Tre tipi di nanostrutture caratterizzate dalla periodicità 2D sono state analizzate: matrici di nanoprismi, matrici di nanobuchi e matrici di gusci quasi chiusi, i cui elementi di base sono, rispettivamente, prismi metallici a base triangolare, buchi che attraversano strati sottili di metallo e gusci metallici non chiusi attorno a un nucleo dielettrico. Il primo tipo è la base per dei biosensori, e in questo caso uno studio di ottimizzazione è stato compiuto per massimizzare la sensibilità. Il secondo tipo è la chiave per il controllo fine dell’emissione da ioni di Erbio eccitati, e il risultato supera i precedenti, ottenuti senza nanostrutturazione. Il terzo tipo è basato su di un nuovo approccio per la fabbricazione di nanostrutture bi-metalliche, consentendo la produzione di materiali plasmonici e magnetoplasmonici. La strutturazione alla nanoscala è stata portata avanti in modo economicamente vantaggioso, essento tutti e tre i sistemi periodici basati su di una tecnica poco costosa di sintesi. Infine, nanostrutture che mostrano invarianza di scala, frattali, sono state sintetizzate e studiate meticolosamente, sia sperimentalmente che con simulazioni. Come risultato, il ruolo universale della correlazione è stato identificato in questo tipo di sistemi plasmonici. Complessivamente, la presente tesi fornisce una comprensione della fisica alla base della risposta plasmonica delle nanstrutture che basano le loro notevoli proprietà sulle simmetrie, siano esse di scala o per translazione.

Innovative Plasmonic Nanostructures Based on Translation or Scale Invariance for Nano-Photonics

MICHIELI, NICCOLO' TOMASO
2014

Abstract

In questa tesi nanostrutture plasmoniche innovative sono state studiate sotto molteplici aspetti, a partire dalla sintesi fino alla caratterizzazione e alla modellizazione ad elementi finiti. L’attenzione è stata focalizzata su due tipi di nanostrutture ordinate: (i) quelle che mostrano invarianza traslazionale bidimensionale (2D) e (ii) quelle che hanno autosimilarità e carattere frattale. Tre tipi di nanostrutture caratterizzate dalla periodicità 2D sono state analizzate: matrici di nanoprismi, matrici di nanobuchi e matrici di gusci quasi chiusi, i cui elementi di base sono, rispettivamente, prismi metallici a base triangolare, buchi che attraversano strati sottili di metallo e gusci metallici non chiusi attorno a un nucleo dielettrico. Il primo tipo è la base per dei biosensori, e in questo caso uno studio di ottimizzazione è stato compiuto per massimizzare la sensibilità. Il secondo tipo è la chiave per il controllo fine dell’emissione da ioni di Erbio eccitati, e il risultato supera i precedenti, ottenuti senza nanostrutturazione. Il terzo tipo è basato su di un nuovo approccio per la fabbricazione di nanostrutture bi-metalliche, consentendo la produzione di materiali plasmonici e magnetoplasmonici. La strutturazione alla nanoscala è stata portata avanti in modo economicamente vantaggioso, essento tutti e tre i sistemi periodici basati su di una tecnica poco costosa di sintesi. Infine, nanostrutture che mostrano invarianza di scala, frattali, sono state sintetizzate e studiate meticolosamente, sia sperimentalmente che con simulazioni. Come risultato, il ruolo universale della correlazione è stato identificato in questo tipo di sistemi plasmonici. Complessivamente, la presente tesi fornisce una comprensione della fisica alla base della risposta plasmonica delle nanstrutture che basano le loro notevoli proprietà sulle simmetrie, siano esse di scala o per translazione.
30-gen-2014
Inglese
Innovative Plasmonic Nanostructures Periodic Fractal
MATTEI, GIOVANNI
Università degli studi di Padova
185
File in questo prodotto:
File Dimensione Formato  
niccolotomaso_michieli_tesi.pdf

accesso aperto

Dimensione 34.07 MB
Formato Adobe PDF
34.07 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/175726
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-175726