I materiali multifase sono di primaria importanza in molte discipline dell’ingegneria e della scienza. Essi sono costituiti da uno scheletro solido poroso, i cui pori sono riempiti da una o più fluidi, ad esempio acqua, aria, gas, petrolio, etc. Il vasto campo di applicazione dei materiali multifase ha motivato lo sviluppo di diversi modelli teorici e procedure numeriche per descrivere il comportamento accoppiato fra le diverse fasi. La maggior parte di questi modelli, basati sulla formulazione delle leggi di bilancio per le differenti fasi coesistenti, si basano sul presupposto di piccole deformazioni, ipotesi che comporta una semplificazione dei modelli ma allo stesso tempo risulta essere restrittiva per diverse applicazioni. Lo scopo di questa tesi è indagare gli aspetti teorici e le soluzioni numeriche di un materiale multifase che subisce grandi deformazioni elastoplasticche, tenendo conto del completo accoppiamento tra la fase solida e la fase fluida. L’idea essenziale del modello consiste nell’imporre le leggi di bilancio per le due (o più) fasi nella configurazione corrente deformata, e poi risolvere tali equazioni numericamente con un metodo agli elementi finiti. Per quanto concerne l’elastoplasticità a deformazioni finite, la formulazione adotta la decomposizione moltiplicativa del gradiente di deformazione. Il modello numerico sviluppato è stato applicato, in particolare, per valutare la stabilità di un pozzo perforato orizzontalmente attraverso una formazione rocciosa altamente porosa, per quantificare la distribuzione delle tensioni e delle deformazioni, per descrivere l’evoluzione delle deformazioni plastiche e la propagazione di bande di deformazione. Per cogliere tanto il fenomeno di compattazione e di dilatazione plastica, caratteristico di rocce ad alta porosità, è stato sviluppato un innovativo modello costitutivo elastoplastico, dotato di una superficie lineare e di una superficie ellittica che si intersecano mantenendo la derivabilità in ogni punto. I risultati delle simulazioni mostrano la capacità dell’approccio a grandi deformazioni per simulare l’intero processo accoppiato.
Multiphase material modelling in finite deformations: theoretical aspects, numerical implementation and applications
SPIEZIA, NICOLO'
2015
Abstract
I materiali multifase sono di primaria importanza in molte discipline dell’ingegneria e della scienza. Essi sono costituiti da uno scheletro solido poroso, i cui pori sono riempiti da una o più fluidi, ad esempio acqua, aria, gas, petrolio, etc. Il vasto campo di applicazione dei materiali multifase ha motivato lo sviluppo di diversi modelli teorici e procedure numeriche per descrivere il comportamento accoppiato fra le diverse fasi. La maggior parte di questi modelli, basati sulla formulazione delle leggi di bilancio per le differenti fasi coesistenti, si basano sul presupposto di piccole deformazioni, ipotesi che comporta una semplificazione dei modelli ma allo stesso tempo risulta essere restrittiva per diverse applicazioni. Lo scopo di questa tesi è indagare gli aspetti teorici e le soluzioni numeriche di un materiale multifase che subisce grandi deformazioni elastoplasticche, tenendo conto del completo accoppiamento tra la fase solida e la fase fluida. L’idea essenziale del modello consiste nell’imporre le leggi di bilancio per le due (o più) fasi nella configurazione corrente deformata, e poi risolvere tali equazioni numericamente con un metodo agli elementi finiti. Per quanto concerne l’elastoplasticità a deformazioni finite, la formulazione adotta la decomposizione moltiplicativa del gradiente di deformazione. Il modello numerico sviluppato è stato applicato, in particolare, per valutare la stabilità di un pozzo perforato orizzontalmente attraverso una formazione rocciosa altamente porosa, per quantificare la distribuzione delle tensioni e delle deformazioni, per descrivere l’evoluzione delle deformazioni plastiche e la propagazione di bande di deformazione. Per cogliere tanto il fenomeno di compattazione e di dilatazione plastica, caratteristico di rocce ad alta porosità, è stato sviluppato un innovativo modello costitutivo elastoplastico, dotato di una superficie lineare e di una superficie ellittica che si intersecano mantenendo la derivabilità in ogni punto. I risultati delle simulazioni mostrano la capacità dell’approccio a grandi deformazioni per simulare l’intero processo accoppiato.File | Dimensione | Formato | |
---|---|---|---|
spiezia_nicolo_finite_multiphase_modelling.pdf
accesso aperto
Dimensione
16.33 MB
Formato
Adobe PDF
|
16.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/175829
URN:NBN:IT:UNIPD-175829