Questa tesi di dottorato riassume i risultati che ho ottenuto cimentandomi in un progetto di ricerca il cui obiettivo era l’individuazione di nuove strategie capaci di aumentare l’efficacia dei catalizzatori per l’idrolisi di diesteri fosforici. Questi catalizzatori, noti nella letteratura scientifica con il nome di “nucleasi artificiali”, erano nel mio caso costruiti a partire da complessi dello ione Zn(II) con leganti poliamminci. La struttura dei complessi utilizzati ha spaziato da piccoli sitemi mononucleari a complessi sistemi catalitici supramolecolari basati su nanoparticelle di oro (nanozimi). I diesteri fosforici sono di vitale importanza nella chimica biologica visto che formano parte dello scheletro di biomolecole essenziali come il DNA e il RNA. Queste macromolecole sono caratterizzate da un’alta stabilità contro la scissione idrolitica, utilie per garantire la preservazione dell’informazione genetica, che è dovuta proprio alla presenza dei residui fosfato. D’altra parte, l’idrolisi dei gruppi fosfodiesterei di DNA e RNA avviene negli organismi viventi in pochi millisecondi, grazie alle nucleasi, gli enzimi idrolitici preposti a questa reazione. Il nostro interesse è quello di riprodurre l’attività di questi enzimi con sistemi di origine sintetica. In particolari, siamo convinti che il miglior candidato per costituire il nucleo “attivo” di sistemi idrolitici artificiali sia lo ione Zn(II). Conseguentemente abbiamo preparato una serie di complessi di Zn(II) caratterizzati da strutture e filosofie di assemblaggio anche molto diverse e ne abbiamo studiato la reattività nel promuovere la scissione idrolitica di un modello di RNA, il 2-idrossipropil-p-nitrofenil fosfato (HPNP). Nella prima parte della tesi sono discussi gli interessanti risultato che ho ottenuto nello strudio della reattività di complessi monometallici di Zn(II) nella idrolisi dell’HPNP. I complessi studiati sono riportati in figura e sono semplici complessi monucleari dei leganti 1,4,7-triazaciclononano(TACN) e 1,4,7-trimetil-1,4,7-triazaciclononano (TMTACN). Gli studi effettuati dimostrano come le piccole differenze nella struttura dei due leganti portano a notevoli differenze nella reattività dei complessi. Nel corso della discussione sarà suggerito che tali effetti, mai descritti in precedenza, possano essere dovuti a diverse geometrie di coordinazione dello ione metallico. Nella seconda parte della tesi mi sono dedicata a studiare gli effetti prodotti dall’ambiente locale in cui i complessi vengono a trovarsi sulla loro reattività come catalizzatori della scissione idrolitica di esteri fosforici. In quest’ottica, ho progettato una serie di sistemi supramolecolari basati su nanoparticelle d’oro funzionalizzate. Queste nanoparticelle catalitiche, conosciute come nanozimi, sono state ottenute ricoprendo i nuclei di oro con tioli dotati di un gruppo reattivo, in particolare di un complesso di Zn(II) del legante TACN. La modulazione del microambiente di reazione è stata ottenuta modificando la struttura dei tioli utilizzati, ed in particolare lo spaziatore inserito tra l’unità catalitica ed il gruppo tiolo preposto all’ancoraggio alla superficie d’oro- I risultati riportati dimostreranno che l’aumento della lunghezza dello spaziatore da quattro atomi di carbonio (tiolo 1) a dodici atomi (tiolo 4) produce un notevole aumento della reattività di questi nanozimi nell’idrolizzare l’HPNP. D’altra parte, l’inserimento di uno spaziatore di tipo oligo(ossietilenica) (tiolo 3), più lungo ma anche più polare, non comporta alcun vantaggio in termini di reattività. La modulazione di reattività osservata dipende, secondo gli studi effettuati, da una miglior stabilizzazione, dovuta ad effetti di natura entalpica, dello stato di transizione della reazione. Tale stabilizzazione è fortemente correlata alla polarità locale del microambiente di reazione, presumibilmente l’interfaccia tra il monostrato e la soluzione acquosa. Nell’ultima parte della tesi descriverò i risultati ottenuti studiando come la morfologia dello strato che ricopre le nanoparticelle d’oro influenzi la reattività dei nanozimi. In questa prospettiva, ho preparato nanoparticelle di oro (2 nm il diametro del nocciolo metallico) coperte in proporzioni diverse con monostrati misti composti dal tiolo 1 ed da un tiolo dotato di un gruppo fosfoilcolina (ZW) o di un residuo di trietileneglicole (TEG). La funzione primaria di questi ultimi tioli è apportare solubilità acquosa al nanosistema ma mi era sembrato possibile che essi potessero anche influenzare la disposizione delle unità catalitiche sulla particella. In effetti, gli esperimenti effettuati in via preliminare mostrano che l’uso dei due tioli porta a diverse distribuzioni delle molecole di ricoprimento che si dispongono in modo casuale o formando “isole”. Queste diverse distribuzioni influenzano l’affinità dei nanozimi per il substrato HPNP ma non la sua attività idrolitica. In conclusione, in questa tesi ho descritto i risultati ottenuti nell’effettuare uno studio simultaneo e sistematico di diverse possibili strategie capaci di modulare la reattività di agenti idrolitici artificiali basati sullo ione zinco(II). I risultati ottenuti potranno aprire la strada a nuovi sviluppi capaci di portare alla realizzazione di sistemi dotati di efficacia realmente comparabile a quella degli enzimi.

Strategies for the modulation of catalytic activity of Zn(II)-based artificial nucleases

DIEZ CASTELLNOU, MARTA
2014

Abstract

Questa tesi di dottorato riassume i risultati che ho ottenuto cimentandomi in un progetto di ricerca il cui obiettivo era l’individuazione di nuove strategie capaci di aumentare l’efficacia dei catalizzatori per l’idrolisi di diesteri fosforici. Questi catalizzatori, noti nella letteratura scientifica con il nome di “nucleasi artificiali”, erano nel mio caso costruiti a partire da complessi dello ione Zn(II) con leganti poliamminci. La struttura dei complessi utilizzati ha spaziato da piccoli sitemi mononucleari a complessi sistemi catalitici supramolecolari basati su nanoparticelle di oro (nanozimi). I diesteri fosforici sono di vitale importanza nella chimica biologica visto che formano parte dello scheletro di biomolecole essenziali come il DNA e il RNA. Queste macromolecole sono caratterizzate da un’alta stabilità contro la scissione idrolitica, utilie per garantire la preservazione dell’informazione genetica, che è dovuta proprio alla presenza dei residui fosfato. D’altra parte, l’idrolisi dei gruppi fosfodiesterei di DNA e RNA avviene negli organismi viventi in pochi millisecondi, grazie alle nucleasi, gli enzimi idrolitici preposti a questa reazione. Il nostro interesse è quello di riprodurre l’attività di questi enzimi con sistemi di origine sintetica. In particolari, siamo convinti che il miglior candidato per costituire il nucleo “attivo” di sistemi idrolitici artificiali sia lo ione Zn(II). Conseguentemente abbiamo preparato una serie di complessi di Zn(II) caratterizzati da strutture e filosofie di assemblaggio anche molto diverse e ne abbiamo studiato la reattività nel promuovere la scissione idrolitica di un modello di RNA, il 2-idrossipropil-p-nitrofenil fosfato (HPNP). Nella prima parte della tesi sono discussi gli interessanti risultato che ho ottenuto nello strudio della reattività di complessi monometallici di Zn(II) nella idrolisi dell’HPNP. I complessi studiati sono riportati in figura e sono semplici complessi monucleari dei leganti 1,4,7-triazaciclononano(TACN) e 1,4,7-trimetil-1,4,7-triazaciclononano (TMTACN). Gli studi effettuati dimostrano come le piccole differenze nella struttura dei due leganti portano a notevoli differenze nella reattività dei complessi. Nel corso della discussione sarà suggerito che tali effetti, mai descritti in precedenza, possano essere dovuti a diverse geometrie di coordinazione dello ione metallico. Nella seconda parte della tesi mi sono dedicata a studiare gli effetti prodotti dall’ambiente locale in cui i complessi vengono a trovarsi sulla loro reattività come catalizzatori della scissione idrolitica di esteri fosforici. In quest’ottica, ho progettato una serie di sistemi supramolecolari basati su nanoparticelle d’oro funzionalizzate. Queste nanoparticelle catalitiche, conosciute come nanozimi, sono state ottenute ricoprendo i nuclei di oro con tioli dotati di un gruppo reattivo, in particolare di un complesso di Zn(II) del legante TACN. La modulazione del microambiente di reazione è stata ottenuta modificando la struttura dei tioli utilizzati, ed in particolare lo spaziatore inserito tra l’unità catalitica ed il gruppo tiolo preposto all’ancoraggio alla superficie d’oro- I risultati riportati dimostreranno che l’aumento della lunghezza dello spaziatore da quattro atomi di carbonio (tiolo 1) a dodici atomi (tiolo 4) produce un notevole aumento della reattività di questi nanozimi nell’idrolizzare l’HPNP. D’altra parte, l’inserimento di uno spaziatore di tipo oligo(ossietilenica) (tiolo 3), più lungo ma anche più polare, non comporta alcun vantaggio in termini di reattività. La modulazione di reattività osservata dipende, secondo gli studi effettuati, da una miglior stabilizzazione, dovuta ad effetti di natura entalpica, dello stato di transizione della reazione. Tale stabilizzazione è fortemente correlata alla polarità locale del microambiente di reazione, presumibilmente l’interfaccia tra il monostrato e la soluzione acquosa. Nell’ultima parte della tesi descriverò i risultati ottenuti studiando come la morfologia dello strato che ricopre le nanoparticelle d’oro influenzi la reattività dei nanozimi. In questa prospettiva, ho preparato nanoparticelle di oro (2 nm il diametro del nocciolo metallico) coperte in proporzioni diverse con monostrati misti composti dal tiolo 1 ed da un tiolo dotato di un gruppo fosfoilcolina (ZW) o di un residuo di trietileneglicole (TEG). La funzione primaria di questi ultimi tioli è apportare solubilità acquosa al nanosistema ma mi era sembrato possibile che essi potessero anche influenzare la disposizione delle unità catalitiche sulla particella. In effetti, gli esperimenti effettuati in via preliminare mostrano che l’uso dei due tioli porta a diverse distribuzioni delle molecole di ricoprimento che si dispongono in modo casuale o formando “isole”. Queste diverse distribuzioni influenzano l’affinità dei nanozimi per il substrato HPNP ma non la sua attività idrolitica. In conclusione, in questa tesi ho descritto i risultati ottenuti nell’effettuare uno studio simultaneo e sistematico di diverse possibili strategie capaci di modulare la reattività di agenti idrolitici artificiali basati sullo ione zinco(II). I risultati ottenuti potranno aprire la strada a nuovi sviluppi capaci di portare alla realizzazione di sistemi dotati di efficacia realmente comparabile a quella degli enzimi.
30-lug-2014
Inglese
phosphate cleavage efficient nanozimi artificial nucleases
SCRIMIN, PAOLO MARIA
POLIMENO, ANTONINO
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
diezcastellnou_marta_tesi.pdf

accesso aperto

Dimensione 5.82 MB
Formato Adobe PDF
5.82 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/176142
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-176142