Il lavoro presentato in questa tesi, riguardante la comunicazione quantistica su scala globale, e’ il risultato di una serie di attivita’ di ricerca svolte presso il laboratorio CNR-IFN Luxor nel corso di questi tre anni. L’obiettivo principale che si vuole raggiungere e’ la dimostrazione della fattibilita’ della comunicazione quantistica in spazio libero, senza escludere dalla definizione "spazio libero" ogni possibile scenario che si puo’ incontrare su una rete globale. Proseguendo in questa direzione in un futuro si potrebbe arrivare ad una rete quantistica mondiale, che coinvolge satelliti e stazioni terrestri. Allo scopo di aiutare il lettore a classificare le attivita’ di ricerca presentate, possiamo identificare tre principali "famiglie" di link: • Link satellite - Terra e Terra - satellite - chiamato nella tesi Vertical link • Link orizzontale punto punto - chiamato nella tesi Horizontal link
 • Link satellite - satellite - chiamato nella tesi Intersatellite link Attraverso la modellizzazione e la simulazione numerica e/o campagne di test sperimentali abbiamo cercato di affrontare problematiche inerenti a tutte e tre le tipologie.
I temi di maggior rilievo, tuttavia, sono quelli relativi alle campagne sperimentali, rispettivamente: • Propagazione di fasci laser in spazio libero su link orizzontale: e’ stato realizzato un link ottico di 144km tra le isole Canarie, al fine di approfondire la conoscenza sulla propagazione della radiazione laser su link orizzontali in atmosfera. I risultati ottenuti hanno consentito di definire le specifiche e la configurazione piu’ adatta per rendere stabile ed affidabile il link quantistico. Questo lavoro viene presentato nel capitolo 3. • Mantenimento della polarizzazione su un canale quantistico spaziale: abbiamo progettato, realizzato e installato un polarimetro presso il centro MLRO allo scopo di ricostruire lo stato di polarizzazione dei fotoni in un canale quantistico spaziale. La nostra informazione quantistica, infatti, e’ codificata nello stato di polarizzazione dei fotoni. Per aprire la strada a sviluppi futuri e all’effettiva implementazione di questa tecnologia (es. trasmettitore e ricevitore quantistici installati a bordo di satelliti) dobbiamo prima dimostrare che il canale preserva lo stato di polarizzazione e che e’ possibile ricostruirne il valore iniziale. Le gia’ esistenti strutture impiegate per il laser ranging sono un esempio di link ottico tra la Terra e lo spazio che puo’ essere sfruttato per l’analisi e la ricostruzione della polarizzazione, opportunamente integrando nel sistema un polarimetro. Questo lavoro viene presentato nel capitolo 6. 
La tesi e’ strutturata come segue: un primo capitolo introduce il modello atmosferico e le grandezze comunemente utilizzate in questo campo per descrivere gli effetti della turbolenza atmosferica. Segue un capitolo di analisi e simulazione (cap.2 ) sui link quantistici spazio - Terra e Terra - spazio. Nel capitolo 3 sono riportati i risultati sperimentali sul link ottico orizzontale, ottenuti nelle campagne di test svoltesi presso le isole Canarie.
I capitoli 4 e 5 sono riguardanti il tema della polarimetria: dopo un’introduzione sui formalismi e le definizioni, sono presentate le simulazioni che hanno fornito le specifiche per la progettazione del polarimetro. Nel penultimo capitolo (cap.6 ) e’ descritto il polarimetro in tutti i suoi sottosistemi: passando dalla progettazione, alla taratura per finire con i risultati dei primi test.L’ultimo capitolo 7 riguarda i collegamenti intersatellitari quantistici: la trattazione e’ esclusivamente focalizzata sulla definizione del modello e sull’analisi di fattibilita’. Un riassunto del contenuto dei principali capitoli e’ riportato di seguito: • Capitolo 2 - Link verticale - (Capitolo di analisi e simulazione numerica): Come accennato precedentemente, su una rete spaziale quantistica globale abbiamo a che fare con link satellite - Terra e Terra - satellite. Per studiare la fattibilita’ della comunicazione quantistica su queste lunghe distanze dobbiamo analizzare la propagazione di un raggio laser in un mezzo turbolento. Come introdotto nel capitolo [1], la turbolenza atmosferica da origine al wandering - "ballamento" - e allo spreading - "allargamento" - del fascio, rispettivamente in base alle dimensioni dei vortici, piccoli o grandi rispetto alle dimensioni del fascio. Questi diversi effetti sono apprezzabili considerando il tempo di esposizione: su scale brevi il fascio appare allargato, ma ancor di piu’, vaga rispetto alla posizione ideale del centroide. Su scale di tempo lunghe gli effetti del wandering sono integrati nel tempo, dando luogo ad un consistente allargamento del fascio. Il fascio conserva il suo profilo gaussiano, ma ha dimensioni nettamente maggiori. Un fascio che attraversa l’atmosfera all’inizio del suo percorso subira’ una degradazione per cui arrivera’ al ricevitore lontano dalla posizione ideale. Allo stesso modo, un fascio che incontra l’atmosfera alla fine del suo percorso sara’ degradato in modo molto meno marcato. I risultati ottenuti dimostrano che l’effetto del wandering sul fascio e’ fortemente diverso per l’uplink e il downlink, fino a circa due ordini di grandezza: da poche decine di migliaia di metri di raggio su distanze molto lunghe (come i satelliti GEO) in uplink, a un raggio dell’ordine di poche centinaia di metri in downlink. Dalle simulazioni dello spostamento del fascio dalla sua posizione ideale, e’ chiaramente evidente che tale effetto e’ trascurabile per il downlink, in cui la degradazione principale e’ l’allargamento causato dai vortici della turbolenza, quindi legato a effetti su scala temporale breve. Invece per l’uplink lo spostamento del fascio appare crescere monotonamente con la distanza, a causa dell’atmosfera all’inizio del percorso. Per il downlink una porzione maggiore di cielo, rispetto al uplink, cade nel "cono a buon SNR", questo permette uno slot temporale piu’ lungo per la comunicazione quantistica. L’ SNR e’ circa 0.7dB allo zenith per i satelliti Galileo, la situazione e’ piu’ promettente per i satelliti GPS in cui l’ SNR e’ di circa 2.2dB. In entrambi i casi i valori ottenuti di fatto dimostrano l’infattibilita’ della comunicazione quantistica con la configurazione simulata, ma danno buoni auspici per ulteriori miglioramenti tecnologici. Nelle condizioni attuali, la fattibilita’ della QKD e’ relegata a distanze nel range delle orbite LEO, in cui un buon SNR puo’ essere ottenuto senza imporre vincoli troppo stringenti per il campo di vista del telescopio e senza spingere la progettazione al limite tecnologico. Piccoli miglioramenti sul IFOV possono spostare il limite di fattibilita’ verso orbite piu’ alte, consentendo la comunicazione quantistica anche con satelliti GPS e Galileo. • Capitolo 3 - Link ottico orizzontale in spazio libero su lunga distanza - (Risultati sperimentali delle campagne di test alle Canarie): Nella prospettiva di estendere la Comunicazione Quantistica (QC) in spazio libero su lunghe distanze, l’analisi dei fenomeni che coinvolgono la propagazione in atmosfera di un fascio ottico visibile o nel vicino infrarosso e’ di fondamentale importanza per determinare il terminale ottica piu’ adatto. La ricerca sui link Terra-Terra e’ utile anche nel campo della QC spaziale, oltre che per la ricerca sulle comunicazioni satellitari classiche [58]. Piu’ in dettaglio, la propagazione ottica in atmosfera, nel caso di distanze oltre i 100km e’ influenzata da diverse trasformazioni dei parametri del fascio, con un conseguente aumento delle perdite nel link. Per di piu’, le comunicazioni ottiche su lunga distanza a singolo fotone che implementano i protocolli quantistici, dall’altro lato, si differenziano dai protocolli classici per il fatto che il segnale da trasmettere non puo’ essere intensificato, essendo un treno di impulsi con una media di circa un fotoni per impulso. La comprensione degli effetti indotti dalla propagazione, al trasmettitore e al ricevitore, nonche’ nella statistica temporale dei fotoni e’ cruciale per valutare la qualita’ della comunicazione e la fattibilita’ del collegamento. Su link molto lunghi, il fading e le perdite sono indotte dal disaccoppiamento del fascio con il ricevitore a causa dello spostamento dello stesso: come e’ stato analizzato per il canale spaziale [86]. In questa prospettiva, di link a singolo fotone in spazio libero a lunga distanza, abbiamo fatto una serie di campagne sperimentali per studiare la propagazione di fasci singoli o doppi su diverse scale di lunghezza scala: da alcune decine ad alcune centinaia di chilometri.
Negli esperimenti si e’ proceduto con l’osservazione globale del fascio combinata alla misura dell’irradianza locale dal lato del ricevitore: misura eseguita classicamente e poi proiettata al caso di link a singolo fotone. Inoltre, con l’obiettivo di stabilizzare la posizione del centroide al ricevitore, si e’ studiata la propagazione di due fasci che formano mutuamente un piccolo angolo, nei casi di angolo isoplanatico per i modi spaziali di basso ed alto ordine. I modelli sperimentali sono stati implementati nelle Alpi, come pure tra Tenerife e La Palma presso le isole Canarie. Si sono effettuate acquisizioni dello spot completo al ricevitore ed analisi sulla scintillazione, confrontando i risultati con i modelli teorici includendovi i dati meteorologici degli Osservatori alle Canarie. Il design della configurazione ottica per la comunicazione quantistica su lunga distanza e’ di fondamentale importanza: abbiamo affrontato il problema sviluppando un telescopio ottimizzato per i nostri esperimenti.
La letteratura sulla propagazione orizzontale e’ piuttosto scarsa soprattutto a causa di decenni in cui l’interesse si e’ concentrato sulla propagazione verticale per scopi astronomici. Come primo passo avevamo bisogno di capire gli effetti della turbolenza atmosferica nella propagazione del fascio come: wandering, spreading e scintillazione. Questo ci ha portato a identificare i migliori parametri di progettazione per trasmettitore e ricevitore e alla scelta del protocollo di comunicazione. Con i dati che abbiamo acquisito vogliamo definire un modello o un insieme di criteri da considerare nella progettazione di un link ottico quantistico per prevedere quali saranno le perdite sul link reale, ed eventualmente sfruttare la variazione temporale delle perdite per la selezione degli slot con il piu’ alto rapporto segnale-rumore [77]. Lo studio della propagazione di un fascio singolo o una coppia di fasci su link di oltre 100km ha dimostrato che il fronte d’onda e’ sottoposto a frazionamento in piu’ spot. Il suo diametro, su lunga esposizione, puo’ essere confinato ad una fattore 3 a 5 il limite di diffrazione. Questi risultati sono stati ottenuti utilizzando un telescopio aplanatico rifrattivo con apertura adeguatamente grande. L’uso di tale schema porta ad una significativa riduzione delle perdite nei link di comunicazione quantistica in condizioni estreme. Questa configurazione e’ stata usata in entrambi i link: OGS (Tenerife)-JKT (La Palma) e viceversa. La riduzione delle perdite e’ un aspetto fondamentale per migliorare l’efficacia e l’affidabilita’ della comunicazione. Nelle comunicazioni quantistiche a singolo fotone le perdite di comunicazione richiedono di allungare il tempo di comunicazione: infatti, a differenza dei canali classici in cui le perdite possono essere compensata aumentando la potenza del trasmettitore, nella comunicazione quantistica possiamo solamente iterare la trasmissione dei singoli fotoni fino a quando sara’ stata raggiunta una quantita’ sufficiente di dati. Le correlazioni nella propagazione di fasci nella stessa direzione e nella propagazione di fasci opposti (segnale beacon dal ricevitore) hanno dimostrato la possibilita’ di controllare il puntamento del canale quantistico con l’uso di un fascio ausiliario co-propagante o con l’uso di un fascio intenso proveniente dal ricevitore. L’impiego alternato o combinato di entrambe le tipologie e’ la soluzione vincente per ottenere un link quantistico stabile ed affidabile. Il sistema presentato e testato si propone di essere una soluzione affidabile per stabilire un canale quantistico in spazio libero. Le tecniche descritte consentono la trasmissione di un laser intenso (cosiddetto "ausiliario") per sondare la turbolenza e per compensarla contemporaneamente allo scambio di singoli fotoni. • Capitolo 5 - Comunicazioni quantistiche nello spazio - (Capitolo di analisi e simulazione numerica): Circa un decennio fa, diversi gruppi hanno tentato di portare la comunicazione quantistica in generale e la distribuzione quantistica di chiavi (QKD), come primo esempio, al di fuori dell’ambiente "protetto" del laboratorio, per applicarle nelle avverse condizioni esterne: [34], [62]. L’estensione naturale dei canali di Comunicazione Quantistica (QC) in spazio libero e’ lo spazio, a causa delle restrizioni imposte dalla curvatura terrestre cosi’ come dalla turbolenza atmosferica. 
La dimostrazione sperimentale della fattibilita’ dello scambio di singoli fotoni tra lo spazio e un ricevitore a terra e’ stata dimostrato recentemente dal nostro gruppo [94]. La capacita’ di controllare lo stato di polarizzazione lungo un canale spaziale e’ importante per aprire la strada ad ulteriori sviluppi nelle QC spaziali. 
Abbiamo stimato il link budget per il sito di Matera al fine di progettare un polarimetro: eseguita la simulazione per il satellite Goce abbiamo ottenuto i valori di SNR con visibilita’ minima e massima. I risultati della simulazione possono essere opportunamente esteso per gli altri satelliti. • Capitolo 6 - Esperimento SPOLAR-M - (Capitolo di progettazione e sviluppo): Le simulazioni hanno mostrato il link budget richiesto per un link terra-spazio e spazio-terra a singolo fotone, giustificando l’uso di siti per il Laser Ranging per fare i test sperimentali. In questo capitolo dopo una breve introduzione sulla polarimetria di Stokes, sara’ presentato il polarimetro utilizzato presso il centro MLRO, progettato e sviluppato presso il Laboratorio di Luxor. Il sistema utilizzato nell’esperimento SPOLAR-M e’ un polarimetro a quattro canali che utilizza beam splitter non polarizzanti. Il polarimetro utilizza due beam splitter non polarizzanti, un lamina ritardatrice a quarto d’onda, un beam splitter polarizzante e due polarizzatori lineari. Le misure di intensita’ sono fatte da quattro rivelatori. Il vettore di Stokes in input e’ determinato dalle quattro misure dei rivelatori e dall’utilizzo di una matrice di Mueller ricavata durante la procedura di calibrazione. Il capitolo tratta la progettazione di tale strumento, da integrare al il sistema di laser ranging di Matera. Il progetto sara’ orientato in modo da ridurre al minimo le modifiche alla configurazione esistente e per assicurare il normale funzionamento della stazione. • Capitolo 7 - Link intersatellitari - (Capitolo di analisi e simulazione numerica): Questo capitolo completa lo scenario di una rete globale di comunicazione quantistica analizzando la fattibilita’ di link intersatellitari quantistici.
Nella sezione 7.1 verra’ modellizzata la propagazione di fasci laser tra satelliti al fine di ottenere informazioni sul link budget (attenuazione, rumore, SNR) e quindi studiarne la fattibilita’. Come nel capitolo [2] sul link verticale, i risultati delle simulazioni mostrano che una reale implementazione di un protocollo di QKD nello spazio, basata sull’uso stati coerenti, richiede una attenta progettazione del trasmettitore: campo di vista, puntamento e tracking del telescopio, efficienza dei rivelatori a singolo fotone ecc. Le dimensioni dello spot al ricevitore risultano essere di alcune decine di metri per lunghezze d’onda corte. L’attenuazione aumenta rapidamente dalle condizioni relativamente buone con link corti passando via via a distante superiori. Il livello di attenuazione e’ dentro il range ottenuto per il downlink e l’uplink nel caso di terminale sulla Terra [30] . Se si utilizza la parte dell’orbita corrispondente al massimo avvicinamento, la QKD risulta essere fattibile. In generale, il livello delle perdite associate a satelliti con terminali dotati di ottica fino a 500mm di diametro rende difficilmente praticabile il link simultaneo-doppio per la distribuzione di coppie entangled: il rumore di fondo limita l’SNR a livelli molto bassi. La fattibilita’ dipende anche dalla capacita’ di predizione orbitale e dalla precisione di puntamento su intervalli prolungati. In conclusione, abbiamo visto che sotto alcune condizioni l’estensione delle comunicazioni e delle tecnologie quantistiche appare praticabile anche nello scenario estremo delle reti ottiche quantistiche satellitari.

Quantum communication channels between earth and space and space to earth

TOMAELLO, ANDREA
2012

Abstract

Il lavoro presentato in questa tesi, riguardante la comunicazione quantistica su scala globale, e’ il risultato di una serie di attivita’ di ricerca svolte presso il laboratorio CNR-IFN Luxor nel corso di questi tre anni. L’obiettivo principale che si vuole raggiungere e’ la dimostrazione della fattibilita’ della comunicazione quantistica in spazio libero, senza escludere dalla definizione "spazio libero" ogni possibile scenario che si puo’ incontrare su una rete globale. Proseguendo in questa direzione in un futuro si potrebbe arrivare ad una rete quantistica mondiale, che coinvolge satelliti e stazioni terrestri. Allo scopo di aiutare il lettore a classificare le attivita’ di ricerca presentate, possiamo identificare tre principali "famiglie" di link: • Link satellite - Terra e Terra - satellite - chiamato nella tesi Vertical link • Link orizzontale punto punto - chiamato nella tesi Horizontal link
 • Link satellite - satellite - chiamato nella tesi Intersatellite link Attraverso la modellizzazione e la simulazione numerica e/o campagne di test sperimentali abbiamo cercato di affrontare problematiche inerenti a tutte e tre le tipologie.
I temi di maggior rilievo, tuttavia, sono quelli relativi alle campagne sperimentali, rispettivamente: • Propagazione di fasci laser in spazio libero su link orizzontale: e’ stato realizzato un link ottico di 144km tra le isole Canarie, al fine di approfondire la conoscenza sulla propagazione della radiazione laser su link orizzontali in atmosfera. I risultati ottenuti hanno consentito di definire le specifiche e la configurazione piu’ adatta per rendere stabile ed affidabile il link quantistico. Questo lavoro viene presentato nel capitolo 3. • Mantenimento della polarizzazione su un canale quantistico spaziale: abbiamo progettato, realizzato e installato un polarimetro presso il centro MLRO allo scopo di ricostruire lo stato di polarizzazione dei fotoni in un canale quantistico spaziale. La nostra informazione quantistica, infatti, e’ codificata nello stato di polarizzazione dei fotoni. Per aprire la strada a sviluppi futuri e all’effettiva implementazione di questa tecnologia (es. trasmettitore e ricevitore quantistici installati a bordo di satelliti) dobbiamo prima dimostrare che il canale preserva lo stato di polarizzazione e che e’ possibile ricostruirne il valore iniziale. Le gia’ esistenti strutture impiegate per il laser ranging sono un esempio di link ottico tra la Terra e lo spazio che puo’ essere sfruttato per l’analisi e la ricostruzione della polarizzazione, opportunamente integrando nel sistema un polarimetro. Questo lavoro viene presentato nel capitolo 6. 
La tesi e’ strutturata come segue: un primo capitolo introduce il modello atmosferico e le grandezze comunemente utilizzate in questo campo per descrivere gli effetti della turbolenza atmosferica. Segue un capitolo di analisi e simulazione (cap.2 ) sui link quantistici spazio - Terra e Terra - spazio. Nel capitolo 3 sono riportati i risultati sperimentali sul link ottico orizzontale, ottenuti nelle campagne di test svoltesi presso le isole Canarie.
I capitoli 4 e 5 sono riguardanti il tema della polarimetria: dopo un’introduzione sui formalismi e le definizioni, sono presentate le simulazioni che hanno fornito le specifiche per la progettazione del polarimetro. Nel penultimo capitolo (cap.6 ) e’ descritto il polarimetro in tutti i suoi sottosistemi: passando dalla progettazione, alla taratura per finire con i risultati dei primi test.L’ultimo capitolo 7 riguarda i collegamenti intersatellitari quantistici: la trattazione e’ esclusivamente focalizzata sulla definizione del modello e sull’analisi di fattibilita’. Un riassunto del contenuto dei principali capitoli e’ riportato di seguito: • Capitolo 2 - Link verticale - (Capitolo di analisi e simulazione numerica): Come accennato precedentemente, su una rete spaziale quantistica globale abbiamo a che fare con link satellite - Terra e Terra - satellite. Per studiare la fattibilita’ della comunicazione quantistica su queste lunghe distanze dobbiamo analizzare la propagazione di un raggio laser in un mezzo turbolento. Come introdotto nel capitolo [1], la turbolenza atmosferica da origine al wandering - "ballamento" - e allo spreading - "allargamento" - del fascio, rispettivamente in base alle dimensioni dei vortici, piccoli o grandi rispetto alle dimensioni del fascio. Questi diversi effetti sono apprezzabili considerando il tempo di esposizione: su scale brevi il fascio appare allargato, ma ancor di piu’, vaga rispetto alla posizione ideale del centroide. Su scale di tempo lunghe gli effetti del wandering sono integrati nel tempo, dando luogo ad un consistente allargamento del fascio. Il fascio conserva il suo profilo gaussiano, ma ha dimensioni nettamente maggiori. Un fascio che attraversa l’atmosfera all’inizio del suo percorso subira’ una degradazione per cui arrivera’ al ricevitore lontano dalla posizione ideale. Allo stesso modo, un fascio che incontra l’atmosfera alla fine del suo percorso sara’ degradato in modo molto meno marcato. I risultati ottenuti dimostrano che l’effetto del wandering sul fascio e’ fortemente diverso per l’uplink e il downlink, fino a circa due ordini di grandezza: da poche decine di migliaia di metri di raggio su distanze molto lunghe (come i satelliti GEO) in uplink, a un raggio dell’ordine di poche centinaia di metri in downlink. Dalle simulazioni dello spostamento del fascio dalla sua posizione ideale, e’ chiaramente evidente che tale effetto e’ trascurabile per il downlink, in cui la degradazione principale e’ l’allargamento causato dai vortici della turbolenza, quindi legato a effetti su scala temporale breve. Invece per l’uplink lo spostamento del fascio appare crescere monotonamente con la distanza, a causa dell’atmosfera all’inizio del percorso. Per il downlink una porzione maggiore di cielo, rispetto al uplink, cade nel "cono a buon SNR", questo permette uno slot temporale piu’ lungo per la comunicazione quantistica. L’ SNR e’ circa 0.7dB allo zenith per i satelliti Galileo, la situazione e’ piu’ promettente per i satelliti GPS in cui l’ SNR e’ di circa 2.2dB. In entrambi i casi i valori ottenuti di fatto dimostrano l’infattibilita’ della comunicazione quantistica con la configurazione simulata, ma danno buoni auspici per ulteriori miglioramenti tecnologici. Nelle condizioni attuali, la fattibilita’ della QKD e’ relegata a distanze nel range delle orbite LEO, in cui un buon SNR puo’ essere ottenuto senza imporre vincoli troppo stringenti per il campo di vista del telescopio e senza spingere la progettazione al limite tecnologico. Piccoli miglioramenti sul IFOV possono spostare il limite di fattibilita’ verso orbite piu’ alte, consentendo la comunicazione quantistica anche con satelliti GPS e Galileo. • Capitolo 3 - Link ottico orizzontale in spazio libero su lunga distanza - (Risultati sperimentali delle campagne di test alle Canarie): Nella prospettiva di estendere la Comunicazione Quantistica (QC) in spazio libero su lunghe distanze, l’analisi dei fenomeni che coinvolgono la propagazione in atmosfera di un fascio ottico visibile o nel vicino infrarosso e’ di fondamentale importanza per determinare il terminale ottica piu’ adatto. La ricerca sui link Terra-Terra e’ utile anche nel campo della QC spaziale, oltre che per la ricerca sulle comunicazioni satellitari classiche [58]. Piu’ in dettaglio, la propagazione ottica in atmosfera, nel caso di distanze oltre i 100km e’ influenzata da diverse trasformazioni dei parametri del fascio, con un conseguente aumento delle perdite nel link. Per di piu’, le comunicazioni ottiche su lunga distanza a singolo fotone che implementano i protocolli quantistici, dall’altro lato, si differenziano dai protocolli classici per il fatto che il segnale da trasmettere non puo’ essere intensificato, essendo un treno di impulsi con una media di circa un fotoni per impulso. La comprensione degli effetti indotti dalla propagazione, al trasmettitore e al ricevitore, nonche’ nella statistica temporale dei fotoni e’ cruciale per valutare la qualita’ della comunicazione e la fattibilita’ del collegamento. Su link molto lunghi, il fading e le perdite sono indotte dal disaccoppiamento del fascio con il ricevitore a causa dello spostamento dello stesso: come e’ stato analizzato per il canale spaziale [86]. In questa prospettiva, di link a singolo fotone in spazio libero a lunga distanza, abbiamo fatto una serie di campagne sperimentali per studiare la propagazione di fasci singoli o doppi su diverse scale di lunghezza scala: da alcune decine ad alcune centinaia di chilometri.
Negli esperimenti si e’ proceduto con l’osservazione globale del fascio combinata alla misura dell’irradianza locale dal lato del ricevitore: misura eseguita classicamente e poi proiettata al caso di link a singolo fotone. Inoltre, con l’obiettivo di stabilizzare la posizione del centroide al ricevitore, si e’ studiata la propagazione di due fasci che formano mutuamente un piccolo angolo, nei casi di angolo isoplanatico per i modi spaziali di basso ed alto ordine. I modelli sperimentali sono stati implementati nelle Alpi, come pure tra Tenerife e La Palma presso le isole Canarie. Si sono effettuate acquisizioni dello spot completo al ricevitore ed analisi sulla scintillazione, confrontando i risultati con i modelli teorici includendovi i dati meteorologici degli Osservatori alle Canarie. Il design della configurazione ottica per la comunicazione quantistica su lunga distanza e’ di fondamentale importanza: abbiamo affrontato il problema sviluppando un telescopio ottimizzato per i nostri esperimenti.
La letteratura sulla propagazione orizzontale e’ piuttosto scarsa soprattutto a causa di decenni in cui l’interesse si e’ concentrato sulla propagazione verticale per scopi astronomici. Come primo passo avevamo bisogno di capire gli effetti della turbolenza atmosferica nella propagazione del fascio come: wandering, spreading e scintillazione. Questo ci ha portato a identificare i migliori parametri di progettazione per trasmettitore e ricevitore e alla scelta del protocollo di comunicazione. Con i dati che abbiamo acquisito vogliamo definire un modello o un insieme di criteri da considerare nella progettazione di un link ottico quantistico per prevedere quali saranno le perdite sul link reale, ed eventualmente sfruttare la variazione temporale delle perdite per la selezione degli slot con il piu’ alto rapporto segnale-rumore [77]. Lo studio della propagazione di un fascio singolo o una coppia di fasci su link di oltre 100km ha dimostrato che il fronte d’onda e’ sottoposto a frazionamento in piu’ spot. Il suo diametro, su lunga esposizione, puo’ essere confinato ad una fattore 3 a 5 il limite di diffrazione. Questi risultati sono stati ottenuti utilizzando un telescopio aplanatico rifrattivo con apertura adeguatamente grande. L’uso di tale schema porta ad una significativa riduzione delle perdite nei link di comunicazione quantistica in condizioni estreme. Questa configurazione e’ stata usata in entrambi i link: OGS (Tenerife)-JKT (La Palma) e viceversa. La riduzione delle perdite e’ un aspetto fondamentale per migliorare l’efficacia e l’affidabilita’ della comunicazione. Nelle comunicazioni quantistiche a singolo fotone le perdite di comunicazione richiedono di allungare il tempo di comunicazione: infatti, a differenza dei canali classici in cui le perdite possono essere compensata aumentando la potenza del trasmettitore, nella comunicazione quantistica possiamo solamente iterare la trasmissione dei singoli fotoni fino a quando sara’ stata raggiunta una quantita’ sufficiente di dati. Le correlazioni nella propagazione di fasci nella stessa direzione e nella propagazione di fasci opposti (segnale beacon dal ricevitore) hanno dimostrato la possibilita’ di controllare il puntamento del canale quantistico con l’uso di un fascio ausiliario co-propagante o con l’uso di un fascio intenso proveniente dal ricevitore. L’impiego alternato o combinato di entrambe le tipologie e’ la soluzione vincente per ottenere un link quantistico stabile ed affidabile. Il sistema presentato e testato si propone di essere una soluzione affidabile per stabilire un canale quantistico in spazio libero. Le tecniche descritte consentono la trasmissione di un laser intenso (cosiddetto "ausiliario") per sondare la turbolenza e per compensarla contemporaneamente allo scambio di singoli fotoni. • Capitolo 5 - Comunicazioni quantistiche nello spazio - (Capitolo di analisi e simulazione numerica): Circa un decennio fa, diversi gruppi hanno tentato di portare la comunicazione quantistica in generale e la distribuzione quantistica di chiavi (QKD), come primo esempio, al di fuori dell’ambiente "protetto" del laboratorio, per applicarle nelle avverse condizioni esterne: [34], [62]. L’estensione naturale dei canali di Comunicazione Quantistica (QC) in spazio libero e’ lo spazio, a causa delle restrizioni imposte dalla curvatura terrestre cosi’ come dalla turbolenza atmosferica. 
La dimostrazione sperimentale della fattibilita’ dello scambio di singoli fotoni tra lo spazio e un ricevitore a terra e’ stata dimostrato recentemente dal nostro gruppo [94]. La capacita’ di controllare lo stato di polarizzazione lungo un canale spaziale e’ importante per aprire la strada ad ulteriori sviluppi nelle QC spaziali. 
Abbiamo stimato il link budget per il sito di Matera al fine di progettare un polarimetro: eseguita la simulazione per il satellite Goce abbiamo ottenuto i valori di SNR con visibilita’ minima e massima. I risultati della simulazione possono essere opportunamente esteso per gli altri satelliti. • Capitolo 6 - Esperimento SPOLAR-M - (Capitolo di progettazione e sviluppo): Le simulazioni hanno mostrato il link budget richiesto per un link terra-spazio e spazio-terra a singolo fotone, giustificando l’uso di siti per il Laser Ranging per fare i test sperimentali. In questo capitolo dopo una breve introduzione sulla polarimetria di Stokes, sara’ presentato il polarimetro utilizzato presso il centro MLRO, progettato e sviluppato presso il Laboratorio di Luxor. Il sistema utilizzato nell’esperimento SPOLAR-M e’ un polarimetro a quattro canali che utilizza beam splitter non polarizzanti. Il polarimetro utilizza due beam splitter non polarizzanti, un lamina ritardatrice a quarto d’onda, un beam splitter polarizzante e due polarizzatori lineari. Le misure di intensita’ sono fatte da quattro rivelatori. Il vettore di Stokes in input e’ determinato dalle quattro misure dei rivelatori e dall’utilizzo di una matrice di Mueller ricavata durante la procedura di calibrazione. Il capitolo tratta la progettazione di tale strumento, da integrare al il sistema di laser ranging di Matera. Il progetto sara’ orientato in modo da ridurre al minimo le modifiche alla configurazione esistente e per assicurare il normale funzionamento della stazione. • Capitolo 7 - Link intersatellitari - (Capitolo di analisi e simulazione numerica): Questo capitolo completa lo scenario di una rete globale di comunicazione quantistica analizzando la fattibilita’ di link intersatellitari quantistici.
Nella sezione 7.1 verra’ modellizzata la propagazione di fasci laser tra satelliti al fine di ottenere informazioni sul link budget (attenuazione, rumore, SNR) e quindi studiarne la fattibilita’. Come nel capitolo [2] sul link verticale, i risultati delle simulazioni mostrano che una reale implementazione di un protocollo di QKD nello spazio, basata sull’uso stati coerenti, richiede una attenta progettazione del trasmettitore: campo di vista, puntamento e tracking del telescopio, efficienza dei rivelatori a singolo fotone ecc. Le dimensioni dello spot al ricevitore risultano essere di alcune decine di metri per lunghezze d’onda corte. L’attenuazione aumenta rapidamente dalle condizioni relativamente buone con link corti passando via via a distante superiori. Il livello di attenuazione e’ dentro il range ottenuto per il downlink e l’uplink nel caso di terminale sulla Terra [30] . Se si utilizza la parte dell’orbita corrispondente al massimo avvicinamento, la QKD risulta essere fattibile. In generale, il livello delle perdite associate a satelliti con terminali dotati di ottica fino a 500mm di diametro rende difficilmente praticabile il link simultaneo-doppio per la distribuzione di coppie entangled: il rumore di fondo limita l’SNR a livelli molto bassi. La fattibilita’ dipende anche dalla capacita’ di predizione orbitale e dalla precisione di puntamento su intervalli prolungati. In conclusione, abbiamo visto che sotto alcune condizioni l’estensione delle comunicazioni e delle tecnologie quantistiche appare praticabile anche nello scenario estremo delle reti ottiche quantistiche satellitari.
27-gen-2012
Inglese
Quantum communication, comunicazioni quantistiche, free space link, polarimeter
NALETTO, GIAMPIERO
NALETTO, GIAMPIERO
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
TesiPhDTomaello.pdf

accesso aperto

Dimensione 51.79 MB
Formato Adobe PDF
51.79 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/176161
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-176161