Come possiamo rappresentare i numeri e fare calcoli matematici? Questa domanda è l'obiettivo principale del presente lavoro e cade nel campo della cognizione matematica, il quale si interessa dei processi cognitivi e neurologici che sottendono le abilità matematiche. L'ipotesi della linea numerica mentale (MNL) prevede che i numeri siano rappresentati mentalmente sottoforma di una misura continua (analogica) con valori numerici crescenti da sinistra a destra. La MNL viene considerata uno dei migliori modelli per la rappresentazione mentale dei numeri. Molti studi hanno esaminato la MNL considerando l’effetto SNARC (Spatial-Numerical Association of Response Codes) come prova per una connessione univoca tra spazio e numero. Tuttavia, è stato dimostrato che la rappresentazione mentale di valori piccoli a sinistra e di valori più grandi esiste anche per grandezze diverse dalla numerosità, compresa la durata temporale e la grandezza fisica. Queste osservazioni convergono con l'idea di un sistema dove diverse grandezze (ad esempio tempo, spazio e numerosità) condividono risorse neurali e concettuali, definito sistema generale di elaborazione delle grandezze (GMS). Questo solleva un'importante domanda sulla natura delle informazioni rappresentate lungo la MNL: si tratta esclusivamente di informazioni numeriche? Il presente lavoro è diviso in 4 capitoli. Il capitolo 1 affronta diversi problemi riguardanti la rappresentazione mentale dei numeri. La ricerca nel campo della cognizione matematica ha una lunga storia e ha fatto notevoli progressi negli ultimi decenni; a volte questo grande volume di dati rende difficile ottenere una visione globale di quello che è lo stato dell'arte. Per questo motivo il Capitolo 1 offrirà una 1panoramica dei diversi modelli di rappresentazione mentale dei numeri, sia innati che acquisiti, precisi o approssimati, simbolici o non simbolici. Prima di tutto sono elencate le principali scoperte sulla rappresentazione mentale dei numeri; in secondo luogo verrà presentata una carrellata sulla letteratura che mostra come le rappresentazioni di tempo, spazio, intensità e numero interagiscano tra loro e probabilmente condividano meccanismi di elaborazione; questo fornirà un adeguato contesto teorico necessario alla chiara comprensione dei lavori sperimentali presentati nei capitoli successivi. Una gran quantità di risultati scientifici dimostra che la rappresentazione e l'elaborazione dei numeri siano associate all'attivazione di una rappresentazione di natura spaziale. Una delle posizioni canoniche della cognizione numerica a tal riguardo afferma che la codifica spaziale è una componente imprescindibile della rappresentazione mentale a lungo termine dei numeri. Secondo questa idea, che porta il nome di ipotesi della linea numerica mentale, i numeri sarebbero rappresentati come una linea continua con i numeri più piccoli a sinistra e quelli più grandi a destra. Tuttavia l'origine dell'associazione tra numeri e spazio non è stata ancora totalmente chiarita. Verranno presentati degli studi che dimostrano come la codifica spaziale dei numeri non sia, in effetti, stabile nè necessariamente il risultato di un'associazione a lungo termine, ma al contrario sia una rappresentazione flessibile costruita a partire dalle necessità di elaborazione delle informazioni specifiche per i compiti che ogniuno di noi si trova a svolgere quotidianamente. Inoltre saranno presi in considerazione studi sull'associazione dei numeri con grandezze prive di caratteristiche spaziali. Nel Capitolo 2 viene presentata una serie di tre studi sperimentali ed in ognuno di essi è stato impiegato un metodo di risposta basato sulla produzione di numerosità. I partecipanti hanno eseguito un compito di aritmetica approssimata su numeri presentati, a seconda dello studio, in notazione simbolica o non simbolica. In tutti gli studi presentati i partecipanti sono stati istruiti ad utilizzare un metodo di risposta caratterizzato dalla produzione di numerosità non simboliche, essi infatti fornivano la risposta al compito specifico nel quale erano impegnati attraverso la produzione, sullo schermo di un computer, di un insieme di punti la cui numerosità era controllata dalla rotazione di una manopola posta davanti ai partecipanti e connessa al computer. Un apposito programma si occupava di registrare il grado di rotazione della manopola ed aggiornare il numero di punti presentati sullo schermo. Lo studio 1 presenta due esperimenti in cui i partecipanti giudicavano la numerosità media tra due insiemi di punti presentati in sequenza. Nell'Esperimento 1 di questo studio, i partecipanti utilizzavano una scala di numerica di risposta da 0 a20 (scala categorica), mentre nell'Esperimento 2 la risposta è stata data attraverso il metodo di risposta basato sulla produzione di numerosità. I risultati di questo studio hanno mostrato come le risposte siano state fornite secondo un modello di integrazione Average. Questo suggerisce una linearità nella scala risposta per entrambi i metodi usati nel compito di aritmetica approssimativa. Più importante, i due operandi mostravano di esercitare la stessa influenza sulla risposta fornita dai partecipanti, il che esclude un effetto sequenza o recenza legata ai compiti impiegati. Questi due esperimenti sono serviti come strumento di validazione del metodo di risposta basato sulla produzione di numerosità al fine della sua applicazione negli studi successivi. Lo Studio 2 presenta un esperimento in cui il metodo di risposta basato sulla produzione di numerosità è stato utilizzato per testare l'effetto della forza necessaria a ruotare la manopola usata per portare a termine un compito di aritmetica mentale. In particolare si è verificata l'influenza della variabile Forza sull'effetto denominato Operational Momentum (OM). L'effetto OM è la tendenza sistematica a sovrastimare i risultati di addizione e a sottovalutare i risultati di sottrazioni in condizioni che impediscono un esatto conteggio. In questo esperimento la forza necessaria per ruotare la manopola è stata manipolata in tre blocchi tra i soggetti. La letteratura ha suggerito che l'effetto OM possa dipendere da una rappresentazione spaziale dei numeri; tuttavia i risultati di questo studio dimostrano che l'eliminazione di un feedback psicomotorio quale la forza richiesta per ruotare la manopola, porta all'annullamento della differenza tra addizioni e sottrazioni. I risultati di questo studio forniscono evidenze sperimentali dell'influenza di una grandezza priva di connotazioni spaziali quale la Forza su un fenomeno di aritmetica mentale come l'effetto OM. Questo risultato è particolarmente interessante considerando che la Forza fosse una variabile interamente irrilevante per lo svolgimento del compito. Lo Studio 3 presenta un esperimento sul confronto tra quattro diversi effetti classicamente considerati esempi dell'automaticità dell'attivazione di codici spaziali durante l'elaborazione di informazioni numeriche. Gli effetti che sono stati considerati in questo studio sono l'effetto SNARC, l'effetto distanza, l'effetto di congruenza delle dimensioni e l'effetto OM. L'effetto SNARC: la tendenza ad essere più veloci nel rispondere a numeri piccoli sulla sinistra e a numeri più grandi a destra. L'effetto distanza: il fatto per cui numeri vicini tra loro sono piu difficili da discriminare rispetto a numeri distanti tra loro. L'effetto di congruenza delle dimensioni: il fatto che i numeri sono identificati come maggiori o minori di 5 più rapidamente se la loro dimensione fisica è congruente con la loro grandezza numerica. Ultimo ma non meno importante, l'effetto OM. Tali effetti sono stati testati insieme per indagare i rapporti che li legano con un approccio basato sulle differenze individuali. La presenza di ognuno degli effetti è stata verificata. Al fine di valutare la correlazione tra i vari effetti in esame, è stato calcolato il coefficiente di regressione lineare di ciascun effetto su ognuno dei partecipanti. I risultati di questo studio, anche se non conclusivi, puntano in direzione di una rappresentazione mentale comune tra gli effetti numerici testati (effetto SNARC, effetto di congruenza della dimensione, effetto distanza). L'effetto OM, inoltre, sembra correlare negativamente con l'effetto SNARC, suggerendo una connessione tra i due, ma contraddicendo la teoria della linea numerica mentale. Nel capitolo 3 si traggono conclusioni sul lavoro sperimentale presentato tenendo conto di diversi quadri esplicativi. Il presente lavoro di ricerca utilizza un metodo di risposta per compiti numerici relativamente poco noto: il metodo di risposta basato sulla produzione di numerosità. Questo metodo presenta una vasta gamma di applicazioni e apre nuovi scenari nel campo della cognizione matematica, fornendo un valido strumento per comprendere nel dettaglio le implicazioni dell'azione nella cognizione matematica. Gli esperimenti qui presentati, inoltre, forniscono indicazioni chiare rispetto al ruolo del feedback psicomotorio con caratteristiche non spaziali in compiti di aritmetica mentale portati a termine attraverso un metodi di risposta basato sulla produzione di numerosità, mettendo così in discussione l'interpretazione classica dell'effetto OM come effetto derivato da una rappresentazione puramente spaziale dei numeri. Considerando che le informazioni riguardanti la forza sono state presentate attraverso un feedback tattile mentre le informazioni numeriche sono state presentate visivamente, tale integrazione tra modalità sensoriali diverse è coerente con l'ipotesi di un sistema generale per le grandezze. Lo studio 3 confrontando, a nostra conoscenza per la prima volta, diversi effetti legati all'ipotesi della linea numerica mentale, fornisce nuove informazioni sui meccanismi di elaborazioni condivisi a questi classici effetti nel campo della cognizione matematica. I nostri risultati, anche se non conclusivi, rinnovano la domanda sulla natura della rappresentazione mentale dei numeri.

More than space. A new insight into number representation.

TIRA, MICHAEL DAVIS
2015

Abstract

Come possiamo rappresentare i numeri e fare calcoli matematici? Questa domanda è l'obiettivo principale del presente lavoro e cade nel campo della cognizione matematica, il quale si interessa dei processi cognitivi e neurologici che sottendono le abilità matematiche. L'ipotesi della linea numerica mentale (MNL) prevede che i numeri siano rappresentati mentalmente sottoforma di una misura continua (analogica) con valori numerici crescenti da sinistra a destra. La MNL viene considerata uno dei migliori modelli per la rappresentazione mentale dei numeri. Molti studi hanno esaminato la MNL considerando l’effetto SNARC (Spatial-Numerical Association of Response Codes) come prova per una connessione univoca tra spazio e numero. Tuttavia, è stato dimostrato che la rappresentazione mentale di valori piccoli a sinistra e di valori più grandi esiste anche per grandezze diverse dalla numerosità, compresa la durata temporale e la grandezza fisica. Queste osservazioni convergono con l'idea di un sistema dove diverse grandezze (ad esempio tempo, spazio e numerosità) condividono risorse neurali e concettuali, definito sistema generale di elaborazione delle grandezze (GMS). Questo solleva un'importante domanda sulla natura delle informazioni rappresentate lungo la MNL: si tratta esclusivamente di informazioni numeriche? Il presente lavoro è diviso in 4 capitoli. Il capitolo 1 affronta diversi problemi riguardanti la rappresentazione mentale dei numeri. La ricerca nel campo della cognizione matematica ha una lunga storia e ha fatto notevoli progressi negli ultimi decenni; a volte questo grande volume di dati rende difficile ottenere una visione globale di quello che è lo stato dell'arte. Per questo motivo il Capitolo 1 offrirà una 1panoramica dei diversi modelli di rappresentazione mentale dei numeri, sia innati che acquisiti, precisi o approssimati, simbolici o non simbolici. Prima di tutto sono elencate le principali scoperte sulla rappresentazione mentale dei numeri; in secondo luogo verrà presentata una carrellata sulla letteratura che mostra come le rappresentazioni di tempo, spazio, intensità e numero interagiscano tra loro e probabilmente condividano meccanismi di elaborazione; questo fornirà un adeguato contesto teorico necessario alla chiara comprensione dei lavori sperimentali presentati nei capitoli successivi. Una gran quantità di risultati scientifici dimostra che la rappresentazione e l'elaborazione dei numeri siano associate all'attivazione di una rappresentazione di natura spaziale. Una delle posizioni canoniche della cognizione numerica a tal riguardo afferma che la codifica spaziale è una componente imprescindibile della rappresentazione mentale a lungo termine dei numeri. Secondo questa idea, che porta il nome di ipotesi della linea numerica mentale, i numeri sarebbero rappresentati come una linea continua con i numeri più piccoli a sinistra e quelli più grandi a destra. Tuttavia l'origine dell'associazione tra numeri e spazio non è stata ancora totalmente chiarita. Verranno presentati degli studi che dimostrano come la codifica spaziale dei numeri non sia, in effetti, stabile nè necessariamente il risultato di un'associazione a lungo termine, ma al contrario sia una rappresentazione flessibile costruita a partire dalle necessità di elaborazione delle informazioni specifiche per i compiti che ogniuno di noi si trova a svolgere quotidianamente. Inoltre saranno presi in considerazione studi sull'associazione dei numeri con grandezze prive di caratteristiche spaziali. Nel Capitolo 2 viene presentata una serie di tre studi sperimentali ed in ognuno di essi è stato impiegato un metodo di risposta basato sulla produzione di numerosità. I partecipanti hanno eseguito un compito di aritmetica approssimata su numeri presentati, a seconda dello studio, in notazione simbolica o non simbolica. In tutti gli studi presentati i partecipanti sono stati istruiti ad utilizzare un metodo di risposta caratterizzato dalla produzione di numerosità non simboliche, essi infatti fornivano la risposta al compito specifico nel quale erano impegnati attraverso la produzione, sullo schermo di un computer, di un insieme di punti la cui numerosità era controllata dalla rotazione di una manopola posta davanti ai partecipanti e connessa al computer. Un apposito programma si occupava di registrare il grado di rotazione della manopola ed aggiornare il numero di punti presentati sullo schermo. Lo studio 1 presenta due esperimenti in cui i partecipanti giudicavano la numerosità media tra due insiemi di punti presentati in sequenza. Nell'Esperimento 1 di questo studio, i partecipanti utilizzavano una scala di numerica di risposta da 0 a20 (scala categorica), mentre nell'Esperimento 2 la risposta è stata data attraverso il metodo di risposta basato sulla produzione di numerosità. I risultati di questo studio hanno mostrato come le risposte siano state fornite secondo un modello di integrazione Average. Questo suggerisce una linearità nella scala risposta per entrambi i metodi usati nel compito di aritmetica approssimativa. Più importante, i due operandi mostravano di esercitare la stessa influenza sulla risposta fornita dai partecipanti, il che esclude un effetto sequenza o recenza legata ai compiti impiegati. Questi due esperimenti sono serviti come strumento di validazione del metodo di risposta basato sulla produzione di numerosità al fine della sua applicazione negli studi successivi. Lo Studio 2 presenta un esperimento in cui il metodo di risposta basato sulla produzione di numerosità è stato utilizzato per testare l'effetto della forza necessaria a ruotare la manopola usata per portare a termine un compito di aritmetica mentale. In particolare si è verificata l'influenza della variabile Forza sull'effetto denominato Operational Momentum (OM). L'effetto OM è la tendenza sistematica a sovrastimare i risultati di addizione e a sottovalutare i risultati di sottrazioni in condizioni che impediscono un esatto conteggio. In questo esperimento la forza necessaria per ruotare la manopola è stata manipolata in tre blocchi tra i soggetti. La letteratura ha suggerito che l'effetto OM possa dipendere da una rappresentazione spaziale dei numeri; tuttavia i risultati di questo studio dimostrano che l'eliminazione di un feedback psicomotorio quale la forza richiesta per ruotare la manopola, porta all'annullamento della differenza tra addizioni e sottrazioni. I risultati di questo studio forniscono evidenze sperimentali dell'influenza di una grandezza priva di connotazioni spaziali quale la Forza su un fenomeno di aritmetica mentale come l'effetto OM. Questo risultato è particolarmente interessante considerando che la Forza fosse una variabile interamente irrilevante per lo svolgimento del compito. Lo Studio 3 presenta un esperimento sul confronto tra quattro diversi effetti classicamente considerati esempi dell'automaticità dell'attivazione di codici spaziali durante l'elaborazione di informazioni numeriche. Gli effetti che sono stati considerati in questo studio sono l'effetto SNARC, l'effetto distanza, l'effetto di congruenza delle dimensioni e l'effetto OM. L'effetto SNARC: la tendenza ad essere più veloci nel rispondere a numeri piccoli sulla sinistra e a numeri più grandi a destra. L'effetto distanza: il fatto per cui numeri vicini tra loro sono piu difficili da discriminare rispetto a numeri distanti tra loro. L'effetto di congruenza delle dimensioni: il fatto che i numeri sono identificati come maggiori o minori di 5 più rapidamente se la loro dimensione fisica è congruente con la loro grandezza numerica. Ultimo ma non meno importante, l'effetto OM. Tali effetti sono stati testati insieme per indagare i rapporti che li legano con un approccio basato sulle differenze individuali. La presenza di ognuno degli effetti è stata verificata. Al fine di valutare la correlazione tra i vari effetti in esame, è stato calcolato il coefficiente di regressione lineare di ciascun effetto su ognuno dei partecipanti. I risultati di questo studio, anche se non conclusivi, puntano in direzione di una rappresentazione mentale comune tra gli effetti numerici testati (effetto SNARC, effetto di congruenza della dimensione, effetto distanza). L'effetto OM, inoltre, sembra correlare negativamente con l'effetto SNARC, suggerendo una connessione tra i due, ma contraddicendo la teoria della linea numerica mentale. Nel capitolo 3 si traggono conclusioni sul lavoro sperimentale presentato tenendo conto di diversi quadri esplicativi. Il presente lavoro di ricerca utilizza un metodo di risposta per compiti numerici relativamente poco noto: il metodo di risposta basato sulla produzione di numerosità. Questo metodo presenta una vasta gamma di applicazioni e apre nuovi scenari nel campo della cognizione matematica, fornendo un valido strumento per comprendere nel dettaglio le implicazioni dell'azione nella cognizione matematica. Gli esperimenti qui presentati, inoltre, forniscono indicazioni chiare rispetto al ruolo del feedback psicomotorio con caratteristiche non spaziali in compiti di aritmetica mentale portati a termine attraverso un metodi di risposta basato sulla produzione di numerosità, mettendo così in discussione l'interpretazione classica dell'effetto OM come effetto derivato da una rappresentazione puramente spaziale dei numeri. Considerando che le informazioni riguardanti la forza sono state presentate attraverso un feedback tattile mentre le informazioni numeriche sono state presentate visivamente, tale integrazione tra modalità sensoriali diverse è coerente con l'ipotesi di un sistema generale per le grandezze. Lo studio 3 confrontando, a nostra conoscenza per la prima volta, diversi effetti legati all'ipotesi della linea numerica mentale, fornisce nuove informazioni sui meccanismi di elaborazioni condivisi a questi classici effetti nel campo della cognizione matematica. I nostri risultati, anche se non conclusivi, rinnovano la domanda sulla natura della rappresentazione mentale dei numeri.
2-feb-2015
Inglese
non-symbolic arithmetic; Force; Operational Momentum; SNARC; Distance effect; size-congruency effect;
TAGLIABUE, MARIAELENA
PERESSOTTI, FRANCESCA
Università degli studi di Padova
109
File in questo prodotto:
File Dimensione Formato  
Tira_Michael_Davis_Thesis.pdf

accesso aperto

Dimensione 803.46 kB
Formato Adobe PDF
803.46 kB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/176192
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-176192