We exploit a suitable moment-based reparametrization of the Poisson mixtures distributions for developing classical and Bayesian inference for the unknown size of a finite population in the presence of count data. Here we put particular emphasis on suitable mappings between ordinary moments and recurrence coefficients that will allow us to implement standard maximization routines and MCMC routines in a more convenient parameter space. We assess the comparative performance of our approach in real data applications and in a simulation study.

Population size estimation via alternative parametrizations for Poisson mixture models

CATENACCI, FRANCESCO
2020

Abstract

We exploit a suitable moment-based reparametrization of the Poisson mixtures distributions for developing classical and Bayesian inference for the unknown size of a finite population in the presence of count data. Here we put particular emphasis on suitable mappings between ordinary moments and recurrence coefficients that will allow us to implement standard maximization routines and MCMC routines in a more convenient parameter space. We assess the comparative performance of our approach in real data applications and in a simulation study.
3-dic-2020
Inglese
Bayesian statitics; Poisson mixtures; unobserved units; censored data
TARDELLA, Luca
ALFO', Marco
Università degli Studi di Roma "La Sapienza"
File in questo prodotto:
File Dimensione Formato  
Tesi_dottorato_Catenacci.pdf

accesso aperto

Dimensione 1.97 MB
Formato Adobe PDF
1.97 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/176311
Il codice NBN di questa tesi è URN:NBN:IT:UNIROMA1-176311