La maggior parte delle memorie non volatili attuali si basa sul transistor a gate flottante. Nel corso degli anni, la dimensione della cella elementare è stata sempre più ridotta per far fronte alle crescenti richieste in termini di densità di memoria. Tuttavia, il transistor a floating gate sta raggiungendo i suoi limiti fisici intrinseci e le dimensioni della cella non possono più essere facilmente ridotte a meno di non compromettere la funzionalità o l’affidabilità del dispositivo stesso. Per far fronte a questi problemi, diverse alternative sono in fase di studio. Tra di esse, si possono annoverare le memorie ferroelettriche, le memorie a cambiamento di fase, e le memorie a nanocristalli. Questi tre tipi di memorie sono oggetto di studio di questa tesi. In particolare, viene analizzata la robustezza alle radiazioni ionizzanti di questi nuovi concetti di memoria. I risultati evidenziano che le memorie non volatili avanzate portano significativi miglioramenti in termini di tolleranza alle radiazioni ionizzanti.

ADVANCED MEMORIES TO OVERCOME THE FLASH MEMORY WEAKNESSES: A RADIATION VIEWPOINT RELIABILITY STUDY

WRACHIEN, NICOLA
2010

Abstract

La maggior parte delle memorie non volatili attuali si basa sul transistor a gate flottante. Nel corso degli anni, la dimensione della cella elementare è stata sempre più ridotta per far fronte alle crescenti richieste in termini di densità di memoria. Tuttavia, il transistor a floating gate sta raggiungendo i suoi limiti fisici intrinseci e le dimensioni della cella non possono più essere facilmente ridotte a meno di non compromettere la funzionalità o l’affidabilità del dispositivo stesso. Per far fronte a questi problemi, diverse alternative sono in fase di studio. Tra di esse, si possono annoverare le memorie ferroelettriche, le memorie a cambiamento di fase, e le memorie a nanocristalli. Questi tre tipi di memorie sono oggetto di studio di questa tesi. In particolare, viene analizzata la robustezza alle radiazioni ionizzanti di questi nuovi concetti di memoria. I risultati evidenziano che le memorie non volatili avanzate portano significativi miglioramenti in termini di tolleranza alle radiazioni ionizzanti.
26-gen-2010
Inglese
Advanced nonvolatile memories, radiation effects, modeling, nanocrystal memory, phase-change memory, ferroelectric memory
Università degli studi di Padova
197
File in questo prodotto:
File Dimensione Formato  
Tesi18final.pdf

accesso aperto

Dimensione 13.47 MB
Formato Adobe PDF
13.47 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/176490
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-176490