Lo scopo del presente lavoro di tesi è l’analisi dell’interazione di nanostrutture plasmoniche e pre-plasmoniche con un emettitore. Lo studio è stato condotto seguendo diversi approcci, ma sempre con il fine di confrontare i risultati sperimentali con modelli teorici sia già noti che nuovi, in modo da comprendere appieno la natura foto-fisica dell’interazione. In questo senso nell’ambito della presente tesi diverse nano-architetture sono state sintetizzate ed accoppiate con film sottili di silice drogata con erbio. La scelta dell’erbio come emettitore è stata dettata dalla sua grande importanza tecnologica della terra rara nella fotonica e nell’optoelettronica, associata alla caratteristica emissione radiativa a 1540nm, che si trova nella finestra di minimo assorbimento ottico della silice. Per questa ragione il primo passo dell’attività di ricerca è stato volto all’ottimizzazione delle proprietà di fotoluminescenza dello ione erbio in silice. Quando un emettitore è posto in prossimità di un film sottile le sue proprietà ottiche vengono modificate. Per descrivere tale variazione è necessario tenere conto di contributi differenti: la variazione della densità locale degli stati dovuta alla riflessione all’interfaccia, l’accoppiamento della radiazione emessa con plasmoni di superficie propaganti sull’interfaccia metallo-dielettrico e infine la dissipazione nel film. Tutti questi aspetti sono stati studiati in dettaglio per film di diversi materiali, dimostrando che un ottimo controllo sul tempo di vita dello stato eccitato può essere ottenuto agendo sulle proprietà dielettriche del film e sulla distanza di separazione tra l’emettitore e l’interfaccia. La nanostrutturazione del film può offrire ulteriori opportunità nella modifica delle proprietà ottiche di un emettitore. Tra le diverse nanostrutture plasmoniche, i nanohole arrays (NHAs) possono essere visti come i candidati ideali per questo scopo grazie alla loro trasmissione ottica straordinaria (EOT): a determinate lunghezze d’onda definite dalla periodicità dei buchi e dalle proprietà dielettriche dei materiali coinvolti, la luce trasmessa attraverso il NHA è ordini di grandezza più grande rispetto a quella predetta dalla teoria classica della diffrazione. Quando il picco della EOT è risonante con la lunghezza d’onda di emissione dell’emettitore, è stato dimostrato un forte accoppiamento plasmonico che porta ad un marcato accorciamento del tempo di vita nella quasi assenza di dissipazione nella nanostruttura. Il miglioramento delle proprietà ottiche di un emettitore può essere ottenuto non solamente agendo sulla parte emissiva del processo, ma anche aumentando la probabilità di eccitazione. A questo scopo, una possibilità interessante è offerta dalla sensitizzazione da aggregati metallici ultra-piccoli ottenuti per impiantazione ionica. Cluster di metalli nobili composti da 10–20 atomi possono infatti assorbire efficientemente la radiazione di eccitazione attraverso transizioni interbanda e trasferire l’energia a un emettitore posto nelle vicinanze, agendo in questo modo da efficienti nanoantenne. Tale interazione può portare ad un aumento della sezione d’urto di eccitazione efficace di diversi ordini di grandezza. Infine, tutti questi risultati hanno permesso lo sviluppo di modelli predittivi che possono essere utilizzati nella progettazione di nuovi dispositivi per diverse applicazioni fotoniche
Synthesis and characterization of plasmonic nanostructures with controlled geometry for photonic applications
KALINIC, BORIS
2014
Abstract
Lo scopo del presente lavoro di tesi è l’analisi dell’interazione di nanostrutture plasmoniche e pre-plasmoniche con un emettitore. Lo studio è stato condotto seguendo diversi approcci, ma sempre con il fine di confrontare i risultati sperimentali con modelli teorici sia già noti che nuovi, in modo da comprendere appieno la natura foto-fisica dell’interazione. In questo senso nell’ambito della presente tesi diverse nano-architetture sono state sintetizzate ed accoppiate con film sottili di silice drogata con erbio. La scelta dell’erbio come emettitore è stata dettata dalla sua grande importanza tecnologica della terra rara nella fotonica e nell’optoelettronica, associata alla caratteristica emissione radiativa a 1540nm, che si trova nella finestra di minimo assorbimento ottico della silice. Per questa ragione il primo passo dell’attività di ricerca è stato volto all’ottimizzazione delle proprietà di fotoluminescenza dello ione erbio in silice. Quando un emettitore è posto in prossimità di un film sottile le sue proprietà ottiche vengono modificate. Per descrivere tale variazione è necessario tenere conto di contributi differenti: la variazione della densità locale degli stati dovuta alla riflessione all’interfaccia, l’accoppiamento della radiazione emessa con plasmoni di superficie propaganti sull’interfaccia metallo-dielettrico e infine la dissipazione nel film. Tutti questi aspetti sono stati studiati in dettaglio per film di diversi materiali, dimostrando che un ottimo controllo sul tempo di vita dello stato eccitato può essere ottenuto agendo sulle proprietà dielettriche del film e sulla distanza di separazione tra l’emettitore e l’interfaccia. La nanostrutturazione del film può offrire ulteriori opportunità nella modifica delle proprietà ottiche di un emettitore. Tra le diverse nanostrutture plasmoniche, i nanohole arrays (NHAs) possono essere visti come i candidati ideali per questo scopo grazie alla loro trasmissione ottica straordinaria (EOT): a determinate lunghezze d’onda definite dalla periodicità dei buchi e dalle proprietà dielettriche dei materiali coinvolti, la luce trasmessa attraverso il NHA è ordini di grandezza più grande rispetto a quella predetta dalla teoria classica della diffrazione. Quando il picco della EOT è risonante con la lunghezza d’onda di emissione dell’emettitore, è stato dimostrato un forte accoppiamento plasmonico che porta ad un marcato accorciamento del tempo di vita nella quasi assenza di dissipazione nella nanostruttura. Il miglioramento delle proprietà ottiche di un emettitore può essere ottenuto non solamente agendo sulla parte emissiva del processo, ma anche aumentando la probabilità di eccitazione. A questo scopo, una possibilità interessante è offerta dalla sensitizzazione da aggregati metallici ultra-piccoli ottenuti per impiantazione ionica. Cluster di metalli nobili composti da 10–20 atomi possono infatti assorbire efficientemente la radiazione di eccitazione attraverso transizioni interbanda e trasferire l’energia a un emettitore posto nelle vicinanze, agendo in questo modo da efficienti nanoantenne. Tale interazione può portare ad un aumento della sezione d’urto di eccitazione efficace di diversi ordini di grandezza. Infine, tutti questi risultati hanno permesso lo sviluppo di modelli predittivi che possono essere utilizzati nella progettazione di nuovi dispositivi per diverse applicazioni fotonicheFile | Dimensione | Formato | |
---|---|---|---|
kalinic_boris_tesi.pdf
accesso aperto
Dimensione
29.32 MB
Formato
Adobe PDF
|
29.32 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/176510
URN:NBN:IT:UNIPD-176510