Questa tesi presenta alcune nuove costruzioni per curve e superfici a topologia arbitraria nel contesto della modellazione geometrica. In particolare, riguarda principalmente tre argomenti strettamente collegati tra loro che sono di interesse sia nella ricerca teorica sia in quella applicata: le superfici di suddivisione, l'interpolazione locale non-uniforme (nei casi univariato e bivariato), e gli spazi di spline generalizzate. Nello specifico, descriviamo una strategia per l'integrazione di superfici di suddivisione in sistemi di progettazione assistita dal calcolatore e forniamo degli esempi per mostrare l'efficacia della sua implementazione. Inoltre, presentiamo un metodo per la costruzione di interpolanti univariati polinomiali a tratti, non-uniformi, a supporto locale e che hanno grado minimo rispetto agli altri parametri di progettazione prescritti (come l'ampiezza del supporto, l'ordine di continuità e l'ordine di approssimazione). Sempre nel contesto dell'interpolazione locale non-uniforme, ma nel caso di superfici, introduciamo una nuova strategia di parametrizzazione che, insieme a una opportuna tecnica di patching, ci permette di definire superfici composite che interpolano mesh o network di curve a topologia arbitraria e che soddisfano i requisiti di regolarità e di qualità estetica di forma solitamente richiesti nell'ambito della modellazione CAD. Infine, nel contesto delle spline generalizzate, proponiamo un approccio per la costruzione della base (B-spline) ottimale, normalizzata, totalmente positiva, riconosciuta come la miglior base di rappresentazione ai fini della progettazione. In aggiunta, forniamo una procedura numerica per controllare l'esistenza di una tale base in un dato spazio di spline generalizzate. Tutte le costruzioni qui presentate sono state ideate tenendo in considerazione anche l'importanza delle applicazioni e dell'implementazione, e dei relativi requisiti che le procedure numeriche devono soddisfare, in particolare nel contesto CAD.

New strategies for curve and arbitrary-topology surface constructions for design

ANTONELLI, MICHELE
2015

Abstract

Questa tesi presenta alcune nuove costruzioni per curve e superfici a topologia arbitraria nel contesto della modellazione geometrica. In particolare, riguarda principalmente tre argomenti strettamente collegati tra loro che sono di interesse sia nella ricerca teorica sia in quella applicata: le superfici di suddivisione, l'interpolazione locale non-uniforme (nei casi univariato e bivariato), e gli spazi di spline generalizzate. Nello specifico, descriviamo una strategia per l'integrazione di superfici di suddivisione in sistemi di progettazione assistita dal calcolatore e forniamo degli esempi per mostrare l'efficacia della sua implementazione. Inoltre, presentiamo un metodo per la costruzione di interpolanti univariati polinomiali a tratti, non-uniformi, a supporto locale e che hanno grado minimo rispetto agli altri parametri di progettazione prescritti (come l'ampiezza del supporto, l'ordine di continuità e l'ordine di approssimazione). Sempre nel contesto dell'interpolazione locale non-uniforme, ma nel caso di superfici, introduciamo una nuova strategia di parametrizzazione che, insieme a una opportuna tecnica di patching, ci permette di definire superfici composite che interpolano mesh o network di curve a topologia arbitraria e che soddisfano i requisiti di regolarità e di qualità estetica di forma solitamente richiesti nell'ambito della modellazione CAD. Infine, nel contesto delle spline generalizzate, proponiamo un approccio per la costruzione della base (B-spline) ottimale, normalizzata, totalmente positiva, riconosciuta come la miglior base di rappresentazione ai fini della progettazione. In aggiunta, forniamo una procedura numerica per controllare l'esistenza di una tale base in un dato spazio di spline generalizzate. Tutte le costruzioni qui presentate sono state ideate tenendo in considerazione anche l'importanza delle applicazioni e dell'implementazione, e dei relativi requisiti che le procedure numeriche devono soddisfare, in particolare nel contesto CAD.
26-gen-2015
Inglese
computer-aided design, subdivision surfaces, local non-uniform spline interpolation, interpolating surfaces, arbitrary topology, generalized spline spaces, B-spline basis
CASCIOLA, GIULIO
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
antonelli_michele_tesi.pdf

accesso aperto

Dimensione 12.24 MB
Formato Adobe PDF
12.24 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/176514
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-176514