Sterol regulatory element binding proteins (SREBPs) are a family of transcription factors that regulate lipid biosynthesis and adipogenesis by controlling the expression of several enzymes required for endogenous cholesterol, fatty acid, triacylglycerol, and phospholipid synthesis1. In vertebrates, SREBP activation is mainly controlled by a complex and well-characterized feedback mechanism mediated by cholesterol, a crucial bio-product of the SREBP-activated mevalonate pathway. In this work, we identified the acto-myosin contractility and mechanical forces imposed by the extracellular matrix (ECM) as SREBP1 regulators. The control of SREBP1 by mechanical cues depends on geranylgeranyl pyrophosphate, another key bio-product of the mevalonate pathway, and impacts on stem cell fate in mouse and on fat storage in Drosophila melanogaster. Mechanistically, we show that activation of AMP-activated protein kinase (AMPK) by ECM stiffening and geranylgeranylated RhoA-dependent acto-myosin contraction inhibits SREBP1 maturation and functional activation. Our results unveil an unpredicted and evolutionary conserved role of SREBP1 in rewiring cell metabolism in response to mechanical cues.

Sterol Regulatory Element Binding Protein couples mechanical cues to lipid metabolism

BERTOLIO, REBECCA
2020

Abstract

Sterol regulatory element binding proteins (SREBPs) are a family of transcription factors that regulate lipid biosynthesis and adipogenesis by controlling the expression of several enzymes required for endogenous cholesterol, fatty acid, triacylglycerol, and phospholipid synthesis1. In vertebrates, SREBP activation is mainly controlled by a complex and well-characterized feedback mechanism mediated by cholesterol, a crucial bio-product of the SREBP-activated mevalonate pathway. In this work, we identified the acto-myosin contractility and mechanical forces imposed by the extracellular matrix (ECM) as SREBP1 regulators. The control of SREBP1 by mechanical cues depends on geranylgeranyl pyrophosphate, another key bio-product of the mevalonate pathway, and impacts on stem cell fate in mouse and on fat storage in Drosophila melanogaster. Mechanistically, we show that activation of AMP-activated protein kinase (AMPK) by ECM stiffening and geranylgeranylated RhoA-dependent acto-myosin contraction inhibits SREBP1 maturation and functional activation. Our results unveil an unpredicted and evolutionary conserved role of SREBP1 in rewiring cell metabolism in response to mechanical cues.
16-mar-2020
Inglese
lipid metabolism; mechanotransduction; cytoskeleton; signaling; prenylation
DEL SAL, GIANNINO
Università degli Studi di Trieste
File in questo prodotto:
File Dimensione Formato  
Rebecca Bertolio PhD thesis_final.pdf

accesso aperto

Dimensione 8.25 MB
Formato Adobe PDF
8.25 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/176909
Il codice NBN di questa tesi è URN:NBN:IT:UNITS-176909