I fenomeni spazio-temporali relativi alle misurazioni di piovosità possono essere caratterizzati da modelli statistici fondati su concetti fisici invece di essere identificati da modelli standard basati su correlazioni spazio-temporali e i relativi strumenti analitici. Questa prospettiva è utile per capire se i rapporti tra zone confinanti e anni consecutivi sono attribuibili a meccanismi fisici latenti. Dati satellitari vengono utilizzati per esaminare questa teoria e fornire prove su base empirica. Una recente teoria idrologica, basata sul concetto di auto-organizzazione, è caratterizzata da meccanismi fisici semplificati che sono essenziali per la spiegazione delle relazioni locali presenti nei dati osservati. I modelli di regressione, che si ispirano alla teoria della diffusione di innovazioni, sono in grado di approssimare l'evoluzione del processo di precipitazione di un singolo anno attraverso una più semplice prospettiva. Tuttavia, la moltitudine di informazioni raccolte richiede tecniche innovative di gestione dei dati e soluzioni analitiche avanzate con lo scopo di ottenere risultati ottimali in tempi ragionevoli. Infatti, i minimi quadrati e la regressione quantilica per modelli non-lineari vengono utilizzati per fare inferenza sulla variabile risposta condizionatamente ad alcune covariate. Una nuova tecnica di regressione quantilica è stata sviluppata ad hoc al fine di fornire stime simultanee che non vìolino la proprietà di monotonicità dei quantili. I minimi quadrati non lineari evidenziano un forte legame tra le precipitazioni e alcune caratteristiche salienti delle zone di misurazione. Inoltre, le analisi ottenute tramite la regressione quantilica quantificano la variabilità intrinseca nei dati.

Quantile Regression and Bass Models in Hydrology

SARTORE, LUCA
2014

Abstract

I fenomeni spazio-temporali relativi alle misurazioni di piovosità possono essere caratterizzati da modelli statistici fondati su concetti fisici invece di essere identificati da modelli standard basati su correlazioni spazio-temporali e i relativi strumenti analitici. Questa prospettiva è utile per capire se i rapporti tra zone confinanti e anni consecutivi sono attribuibili a meccanismi fisici latenti. Dati satellitari vengono utilizzati per esaminare questa teoria e fornire prove su base empirica. Una recente teoria idrologica, basata sul concetto di auto-organizzazione, è caratterizzata da meccanismi fisici semplificati che sono essenziali per la spiegazione delle relazioni locali presenti nei dati osservati. I modelli di regressione, che si ispirano alla teoria della diffusione di innovazioni, sono in grado di approssimare l'evoluzione del processo di precipitazione di un singolo anno attraverso una più semplice prospettiva. Tuttavia, la moltitudine di informazioni raccolte richiede tecniche innovative di gestione dei dati e soluzioni analitiche avanzate con lo scopo di ottenere risultati ottimali in tempi ragionevoli. Infatti, i minimi quadrati e la regressione quantilica per modelli non-lineari vengono utilizzati per fare inferenza sulla variabile risposta condizionatamente ad alcune covariate. Una nuova tecnica di regressione quantilica è stata sviluppata ad hoc al fine di fornire stime simultanee che non vìolino la proprietà di monotonicità dei quantili. I minimi quadrati non lineari evidenziano un forte legame tra le precipitazioni e alcune caratteristiche salienti delle zone di misurazione. Inoltre, le analisi ottenute tramite la regressione quantilica quantificano la variabilità intrinseca nei dati.
31-gen-2014
Inglese
rainfall constrained penalized regression Bemmaor innovation diffusion goodness fit test confidence interval region simulation empirical distribution nonlinear semi-parametric generalized Bass quantile sheet optimization Levenberg Marquardt
GUSEO, RENATO
CHIOGNA, MONICA
Università degli studi di Padova
205
File in questo prodotto:
File Dimensione Formato  
sartore_luca_tesi.pdf

accesso aperto

Dimensione 18.47 MB
Formato Adobe PDF
18.47 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/176953
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-176953