Il mio lavoro di tesi si è focalizzato sulla sintesi di film sottili di ossidi trasparenti e conduttivi (TCOs) per via colloidale per applicazioni di gas sensing, solar control ed elettrodo trasparente. Il lavoro è suddiviso principalmente in tre diverse parti. La prima parte si concentra sullo sviluppo di nanoparticelle di ossidi dopati conduttivi e trasparenti per via colloidale. In particolare sono stati sintetizzate, utilizzando sintesi heat-up che non richiedono iniezione ad alta temperatura, nanoparticelle di ZnO dopato con metalli trivalenti come Alluminio e Gallio, oppure dopato con elementi tetravalenti come Silicio e Germanio, e nanoparticelle di TiO2 dopata con Niobio. Gli elettroni liberi introdotti nel cristallo in seguito al drogaggio portano allo sviluppo di peculiari proprietà optoelettroniche, in particolare alla formazione di una LSPR nel vicino infrarosso. Tali nanoparticelle sono state caratterizzate mediante diverse tecniche che permettono di investigare in particolare le variazioni della loro morfologia e delle proprietà ottiche a seguito di diverse concentrazioni di dopante. Nella seconda parte vengono invece approfonditi gli aspetti legati alla deposizione delle sospensioni colloidali ottenute e alla caratterizzazione dei film sottili prodotti. Uno degli obiettivi primari è ottenere film sottili funzionali (ad esempio come elettrodi trasparenti o per rivestimenti solar control) utilizzando blandi trattamenti termici e attraverso diversi approcci, tra cui irraggiamento UV o attacchi con acidi organici in modo da eliminare gran parte dei residui organici. In questo modo, combinando sintesi heat up “non injection” facilmente scalabili, deposizioni tramite spray coating o spin coating (che non richiedano quindi l’uso di vuoto o apparecchiature costose) e trattamenti termici che non richiedano temperature eccessive, è possibile aprire la strada ad una industrializzazione del processo. L’ultima parte si focalizza sull’utilizzo di tali film per applicazioni sensoristiche, in particolare per la rilevazione di H2 e NO2. La LSPR è sensibile ai cambiamenti della costante dielettrica nell’intorno delle particelle ed alla variazione di densità di carica: ciò permette di monitorare i gas che interagiscono con l’ossido analizzando lo spostamento in lunghezza d’onda del picco plasmonico. Sono stati effettuate misurazioni di gas sensing ottico ed elettrico per valutare le diverse performance dei TCOs a diversa concentrazione di dopante. Misurazioni in presenza di LED blu sono state inoltre eseguite, investigando il ruolo di tale radiazione nella cinetica di desorbimento delle molecole adsorbite. Infine è stata anche valutata l’influenza di nanoparticelle di Platino sulla rilevazione di idrogeno al fine di migliorare la sensibilità del sensore sfruttando l’attività catalitica di tali nanoparticelle.
Synthesis and characterization of transparent conductive oxides for gas sensing, solar control and transparent electrode applications
STURARO, MARCO
2016
Abstract
Il mio lavoro di tesi si è focalizzato sulla sintesi di film sottili di ossidi trasparenti e conduttivi (TCOs) per via colloidale per applicazioni di gas sensing, solar control ed elettrodo trasparente. Il lavoro è suddiviso principalmente in tre diverse parti. La prima parte si concentra sullo sviluppo di nanoparticelle di ossidi dopati conduttivi e trasparenti per via colloidale. In particolare sono stati sintetizzate, utilizzando sintesi heat-up che non richiedono iniezione ad alta temperatura, nanoparticelle di ZnO dopato con metalli trivalenti come Alluminio e Gallio, oppure dopato con elementi tetravalenti come Silicio e Germanio, e nanoparticelle di TiO2 dopata con Niobio. Gli elettroni liberi introdotti nel cristallo in seguito al drogaggio portano allo sviluppo di peculiari proprietà optoelettroniche, in particolare alla formazione di una LSPR nel vicino infrarosso. Tali nanoparticelle sono state caratterizzate mediante diverse tecniche che permettono di investigare in particolare le variazioni della loro morfologia e delle proprietà ottiche a seguito di diverse concentrazioni di dopante. Nella seconda parte vengono invece approfonditi gli aspetti legati alla deposizione delle sospensioni colloidali ottenute e alla caratterizzazione dei film sottili prodotti. Uno degli obiettivi primari è ottenere film sottili funzionali (ad esempio come elettrodi trasparenti o per rivestimenti solar control) utilizzando blandi trattamenti termici e attraverso diversi approcci, tra cui irraggiamento UV o attacchi con acidi organici in modo da eliminare gran parte dei residui organici. In questo modo, combinando sintesi heat up “non injection” facilmente scalabili, deposizioni tramite spray coating o spin coating (che non richiedano quindi l’uso di vuoto o apparecchiature costose) e trattamenti termici che non richiedano temperature eccessive, è possibile aprire la strada ad una industrializzazione del processo. L’ultima parte si focalizza sull’utilizzo di tali film per applicazioni sensoristiche, in particolare per la rilevazione di H2 e NO2. La LSPR è sensibile ai cambiamenti della costante dielettrica nell’intorno delle particelle ed alla variazione di densità di carica: ciò permette di monitorare i gas che interagiscono con l’ossido analizzando lo spostamento in lunghezza d’onda del picco plasmonico. Sono stati effettuate misurazioni di gas sensing ottico ed elettrico per valutare le diverse performance dei TCOs a diversa concentrazione di dopante. Misurazioni in presenza di LED blu sono state inoltre eseguite, investigando il ruolo di tale radiazione nella cinetica di desorbimento delle molecole adsorbite. Infine è stata anche valutata l’influenza di nanoparticelle di Platino sulla rilevazione di idrogeno al fine di migliorare la sensibilità del sensore sfruttando l’attività catalitica di tali nanoparticelle.File | Dimensione | Formato | |
---|---|---|---|
sturaro_marco_tesi.pdf
accesso aperto
Dimensione
8.53 MB
Formato
Adobe PDF
|
8.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/176994
URN:NBN:IT:UNIPD-176994