The aim of my PhD project was to study how local heating affects biological functions. More specifically, the research activity was focused on the development of a nanosystem apt to simultaneously control the effects of temperature and force variations on a biomolecule of interest. A similar approach has been used also by Iwaki and coworkers, who constructed an observation system to monitor single myosin dynamics under local heating with high resolution. To the purpose of investigating the dynamics of a 24 base-pairs long single-strand DNA (ssDNA) hairpin, we designed, synthesized and characterized two different DNA origami nanostructures that were used as rigid holders for the ssDNA hairpin. Due to its nearly unlimited design flexibility, the DNA origami nanotechnology provides indeed an unmatched platform for the realization of structures and devices at the nanoscale. Moreover, because of their unique self-recognition properties, DNA origami can be employed to organize metal particles in desired geometries with nanometric precision. In our scheme, gold nanoparticles (AuNPs) were used as local heating sources. In fact, when AuNPs absorb light at the plasmon resonance frequency, collective oscillations of the free electrons are induced. Upon interaction between the electrons and the crystal lattice of the AuNPs, the electrons relax and the thermal energy is transferred to the surrounding environment, thus inducing local heating. We tested and compared two distinct methods to apply piconewton forces on the target hairpin. In the first case, we performed Magnetic Tweezer (MT) measurements on the ssDNA hairpin by using a stiff 4-helix bundle DNA origami as a tether between the MT flow cell and the magnetic beads used to apply the force. We thus devised a specific protocol to include the ssDNA hairpin in the origami nanostructure, in order to increase the overall stability and rigidity of the system and to measure it with the MT technique. In the second case, we exploited the DNA origami force-sensor designed by Nickels et al. to stretch the target hairpin. This nanodevice consists of a rigid supporting structure characterized by an ssDNA filament that can exert few piconewton forces on a target molecule by exploiting the entropic properties of DNA. We modified the original design of the force clamp in order to place the target ssDNA hairpin in the central region of the sensor, where the entropic force is applied. Conformational transitions were monitored by single-molecule Förster resonance energy transfer (FRET). In fact, when the entropic force of the force clamp equals the unzipping force of the hairpin, a transition between the open and the closed states should occur, thus determining a two-state FRET signal. Nonetheless, in the limiting cases in which the hairpin is constantly either zipped or unzipped, the FRET signal should remain constant and the corresponding efficiency should respectively be 1 or 0. Unlike traditional FRET experiments, in our case, it was hence fundamental to compare the data from different DNA origami force sensors, as each one is characterized by a constant entropic force and therefore by a well-established conformation of the hairpin. Both approaches confirmed that the unzipping force of the target hairpin corresponds to F=12 pN ± 1 pN. Nonetheless, the DNA origami force sensor is more suitable to apply controlled tensions to a target biomolecule, as it overcomes the main limitation of force spectroscopy due to unspecific interactions with the surface of the MT flow cell. We finally attached a single 10 nm AuNP to the force-sensor DNA origami to allow heat generation in plasmonic resonance conditions. In this way, our new force system can be employed for further investigations that include both force and temperature control.
Il lavoro di ricerca presentato in questa tesi riguarda lo sviluppo di un nano-sistema in grado di indurre contemporaneamente variazioni di temperatura e di forza su una biomolecola di interesse. Questo progetto si inserisce in un filone più ampio, volto a studiare gli effetti del riscaldamento locale sulle funzioni biologiche di strutture di DNA o proteine. Un approccio simile è stato utilizzato per esempio da Iwaki e collaboratori, i quali hanno costruito un sistema ad alta risoluzione per monitorare la dinamica di una molecola di miosina riscaldata localmente. Allo scopo di investigare la dinamica di una hairpin di ssDNA a 24 coppie di basi, abbiamo progettato, sintetizzato e caratterizzato due diverse nanostrutture di DNA origami, le quali sono state utilizzate come supporti rigidi per la molecola di hairpin stessa. Grazie alla sua elevata versatilità, la nanotecnologia del DNA origami offre infatti la possibilità di creare nano-dispositivi nella scala del nanometro con geometrie arbitrarie e di collocare nanoparticelle metalliche in posizioni specifiche, con precisione nanometrica. Nel nostro schema, le nanoparticelle d'oro (AuNPs) sono state utilizzate come fonti di riscaldamento locale, sfruttando l’energia termica rilasciata in condizioni di risonanza plasmonica. Abbiamo testato due metodi distinti per applicare forze nell’ordine del piconewton alla molecola di interesse. Nel primo caso, abbiamo eseguito misure di Magnetic Tweezing (MT) sulla hairpin, utilizzando una struttura rigida di DNA origami a quattro eliche come tramite tra la celletta del MT e le biglie magnetiche utilizzate per applicare la forza. Per fare ciò, abbiamo dovuto mettere a punto un apposito protocollo per effettuare misure di MT sugli origami. Nel secondo caso, abbiamo sfruttato il sensore di forza progettato da Nickels et al. e basato sulla nanotecnologia del DNA origami. Questo nanodispositivo consiste in una struttura rigida caratterizzata da un filamento di ssDNA, il quale può esercitare forze tra 1 e 20 pN su una molecola di interesse, sfruttando le proprietà entropiche del DNA. Abbiamo tuttavia modificato il disegno originale del nanosensore di forza in modo da posizionare la ssDNA hairpin nella regione centrale a singolo filamento, dove viene applicata la forza entropica. Le variazioni conformazionali della hairpin sono state monitorate tramite misure di Förster Resonance Energy Transfer (FRET). Infatti, quando la forza entropica del nanodispositivo di DNA origami è pari alla forza di apertura e chiusura della hairpin, dovrebbe verificarsi una transizione tra gli stati ‘aperto’ e ‘chiuso’ della molecola stessa, dando quindi origine ad un segnale FRET a due livelli. Nei casi limite in cui la hairpin si trova sempre nella configurazione chiusa o aperta, il segnale FRET dovrebbe invece rimanere costante. A differenza degli esperimenti FRET tradizionali, nel nostro caso è stato fondamentale confrontare tra loro i risultati di diversi nanosensori, ciascuno caratterizzato da una forza entropica costante e quindi da una ben fissata conformazione della hairpin. Entrambi gli approcci hanno confermato che la forza di apertura della hairpin di interesse corrisponde a F=12 pN ± 1 pN. Tuttavia, il sensore di forza di DNA origami rappresenta un metodo migliore per applicare forze controllate ad una biomolecola bersaglio, in quanto permette di superare una delle principali limitazioni della spettroscopia di forza dovuta alla presenza di interazioni non-specifiche tra la superficie della celletta del MT e la molecola in esame. Abbiamo infine attaccato una AuNP di 10 nm di diametro al sensore di forza di DNA origami, al fine di riscaldare localmente la biomolecola d’interesse in condizioni di risonanza plasmonica. In questo modo, il nostro sistema permette di studiare le proprietà di molecole di DNA controllando contemporaneamente la forza esercitata e la temperatura localmente indotta.
Force and temperature measurements on DNA-based nanostructures
COTTA, VALERIA
2020
Abstract
The aim of my PhD project was to study how local heating affects biological functions. More specifically, the research activity was focused on the development of a nanosystem apt to simultaneously control the effects of temperature and force variations on a biomolecule of interest. A similar approach has been used also by Iwaki and coworkers, who constructed an observation system to monitor single myosin dynamics under local heating with high resolution. To the purpose of investigating the dynamics of a 24 base-pairs long single-strand DNA (ssDNA) hairpin, we designed, synthesized and characterized two different DNA origami nanostructures that were used as rigid holders for the ssDNA hairpin. Due to its nearly unlimited design flexibility, the DNA origami nanotechnology provides indeed an unmatched platform for the realization of structures and devices at the nanoscale. Moreover, because of their unique self-recognition properties, DNA origami can be employed to organize metal particles in desired geometries with nanometric precision. In our scheme, gold nanoparticles (AuNPs) were used as local heating sources. In fact, when AuNPs absorb light at the plasmon resonance frequency, collective oscillations of the free electrons are induced. Upon interaction between the electrons and the crystal lattice of the AuNPs, the electrons relax and the thermal energy is transferred to the surrounding environment, thus inducing local heating. We tested and compared two distinct methods to apply piconewton forces on the target hairpin. In the first case, we performed Magnetic Tweezer (MT) measurements on the ssDNA hairpin by using a stiff 4-helix bundle DNA origami as a tether between the MT flow cell and the magnetic beads used to apply the force. We thus devised a specific protocol to include the ssDNA hairpin in the origami nanostructure, in order to increase the overall stability and rigidity of the system and to measure it with the MT technique. In the second case, we exploited the DNA origami force-sensor designed by Nickels et al. to stretch the target hairpin. This nanodevice consists of a rigid supporting structure characterized by an ssDNA filament that can exert few piconewton forces on a target molecule by exploiting the entropic properties of DNA. We modified the original design of the force clamp in order to place the target ssDNA hairpin in the central region of the sensor, where the entropic force is applied. Conformational transitions were monitored by single-molecule Förster resonance energy transfer (FRET). In fact, when the entropic force of the force clamp equals the unzipping force of the hairpin, a transition between the open and the closed states should occur, thus determining a two-state FRET signal. Nonetheless, in the limiting cases in which the hairpin is constantly either zipped or unzipped, the FRET signal should remain constant and the corresponding efficiency should respectively be 1 or 0. Unlike traditional FRET experiments, in our case, it was hence fundamental to compare the data from different DNA origami force sensors, as each one is characterized by a constant entropic force and therefore by a well-established conformation of the hairpin. Both approaches confirmed that the unzipping force of the target hairpin corresponds to F=12 pN ± 1 pN. Nonetheless, the DNA origami force sensor is more suitable to apply controlled tensions to a target biomolecule, as it overcomes the main limitation of force spectroscopy due to unspecific interactions with the surface of the MT flow cell. We finally attached a single 10 nm AuNP to the force-sensor DNA origami to allow heat generation in plasmonic resonance conditions. In this way, our new force system can be employed for further investigations that include both force and temperature control.File | Dimensione | Formato | |
---|---|---|---|
Tesi_dottorato_Valeria_Cotta_corretta.pdf
accesso aperto
Dimensione
15.27 MB
Formato
Adobe PDF
|
15.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/177063
URN:NBN:IT:UNITS-177063