Sommario: Un approccio rigoroso a questioni di Fisica Statistica spesso produce interessanti problemi matematici. Questa tesi di dottorato è composta da due parti. La prima non interseca la seconda, ma entrambe stanno sul confine tra Teoria della Probabilità e Meccanica Statistica. • La prima parte tratta il problema della ricostruzione per catene di Markov su alberi di tipo Galton-Watson. Miglioriamoi risultati precedentemente ottenuti da Mossel e Peres, sia per catene simmetriche che fortemente asimmetriche. Dimostriamo una condizione sufficiente della forma Q(d)c(M) < 1 per la non ricostruzione di catene diMarkov a q-stati sull’albero. Qui c(M) è una costante che dipende dalla matrice di transizione M e Q(d) è la media del numero di figli per vertice nell’albero di Galton-Watson. Questo risultato è equivalente alla purezza della misura libera di Gibbs. Quando consideriamo il caso del modello di Potts assumiamo anche questo punto di vista. Il teorema è valido anche per catene non reversibili. Nel caso del modello di Ising il nostro risultato produce la correta soglia di ricostruzione, nel caso di catene (fortemente) asimmetriche dove si sa che il bound di Kesten-Stigum non è esatto il metodo usato dà risultati numerici migliori. • Nella seconda parte diamo delle stime uniformi nel tempo per la propagazione del caos in alcuni modelli di spin con interazione a campo medio che presentano transizione di fase. Il primo è il modello dinamico di Curie-Weiss, che può essere considerato come il più semplice esempio di sistema con interazione a campo medio. Il secondo è un modello recentemente impiegato per spiegare i meccanismi del rischio di credito; esso descrive l’evoluzione temporale di indicatori finaziari per un gruppo di aziende interagenti quotate sul mercato. Anche se abbiamo trattato modelli specifici, crediamo che il metodo funzioni piuttosto in generale e che sia applicabile anche ad altre classi di modelli. Una limitazione sostanziale dei nostri risultati è che valgono solo nel caso sottocritico, che corrisponde, nel linguaggio della Meccanica Statistica, al regime di alta temperatura.
Two problems concerning interacting systems: 1. On the purity of the free boundary condition Potts measure on Galton-Watson trees 2. Uniform propagation of chaos in some spin-flip models
FORMENTIN, MARCO
2009
Abstract
Sommario: Un approccio rigoroso a questioni di Fisica Statistica spesso produce interessanti problemi matematici. Questa tesi di dottorato è composta da due parti. La prima non interseca la seconda, ma entrambe stanno sul confine tra Teoria della Probabilità e Meccanica Statistica. • La prima parte tratta il problema della ricostruzione per catene di Markov su alberi di tipo Galton-Watson. Miglioriamoi risultati precedentemente ottenuti da Mossel e Peres, sia per catene simmetriche che fortemente asimmetriche. Dimostriamo una condizione sufficiente della forma Q(d)c(M) < 1 per la non ricostruzione di catene diMarkov a q-stati sull’albero. Qui c(M) è una costante che dipende dalla matrice di transizione M e Q(d) è la media del numero di figli per vertice nell’albero di Galton-Watson. Questo risultato è equivalente alla purezza della misura libera di Gibbs. Quando consideriamo il caso del modello di Potts assumiamo anche questo punto di vista. Il teorema è valido anche per catene non reversibili. Nel caso del modello di Ising il nostro risultato produce la correta soglia di ricostruzione, nel caso di catene (fortemente) asimmetriche dove si sa che il bound di Kesten-Stigum non è esatto il metodo usato dà risultati numerici migliori. • Nella seconda parte diamo delle stime uniformi nel tempo per la propagazione del caos in alcuni modelli di spin con interazione a campo medio che presentano transizione di fase. Il primo è il modello dinamico di Curie-Weiss, che può essere considerato come il più semplice esempio di sistema con interazione a campo medio. Il secondo è un modello recentemente impiegato per spiegare i meccanismi del rischio di credito; esso descrive l’evoluzione temporale di indicatori finaziari per un gruppo di aziende interagenti quotate sul mercato. Anche se abbiamo trattato modelli specifici, crediamo che il metodo funzioni piuttosto in generale e che sia applicabile anche ad altre classi di modelli. Una limitazione sostanziale dei nostri risultati è che valgono solo nel caso sottocritico, che corrisponde, nel linguaggio della Meccanica Statistica, al regime di alta temperatura.File | Dimensione | Formato | |
---|---|---|---|
tesi_finale_internet.pdf
accesso aperto
Dimensione
790.46 kB
Formato
Adobe PDF
|
790.46 kB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/177071
URN:NBN:IT:UNIPD-177071