L’ importanza delle Au NP come supporto versatile per applicazioni nell’ambito della catalisi e dei sensori nasce dalle loro esclusive caratteristiche come, ad esempio, alta stabilità, biocompatibilità, facilità di preparazione, specifiche proprietà ottiche and elettroniche dipendenti dalla forma e dalle dimensioni e dal loro alto rapporto area/volume. Inoltre, la superficie delle Au NP può essere facilmente funzionalizzata mediante leganti contenenti vari gruppi funzionali, come tioli, fosfine e ammine che presentano alta affinità per la superficie d’oro. Gli effetti collettivi e cooperativi ottenuti grazie all’organizzazione di componenti organici sulla particella, fornisce multivalenza alla superficie. Le interazioni multivalenti sul monostrato possono, quindi, essere applicate per rafforzare un’interazione tra la superficie funzionalizzata e piccole molecole. In particolare l’auto assemblaggio di piccole molecole su una superficie multivalente permette la realizzazione di sistemi chimici dinamici che possono essere applicati nel campo della catalisi, dei sensori e per la creazione di sistemi regolabili. Nella prima parte della Tesi, viene studiata la capacità catalitica di nanoparticelle composte da un monostrato misto (in particolare composte da 8-trimetilammonio-octiltiolo e tioli di diversa lunghezza contenenti il complesso metallico 4’-metil-2,2’-bipiridina•Cu2+ . In particolare viene studiata l’influenza della geometria indotta dal monostrato misto sulla efficienza e selettività della reazione di Diels-Alder tra cinnamoil-1-metil-1H- imidazolo e il ciclopentadiene. Allo stesso tempo, viene studiato l’effetto dell’ambiente chirale ottenuto grazie all’autoassemblaggio di un peptide chirale (Ac-(LLLL)-Leu-Leu-Gly-Trp-Ser(PO3H2)) sulla enantioselettività della reazione. I risultati dimostrano che in alcuni casi la geometria può influenzare la formazione di prodotti addizionali. Questo può essere giustificato come il risultato di interazioni steriche tra catene alchiliche e catalizzatore, quando quest’ultimo si trova alla pari della superficie del monostrato. Inoltre, è stato dimostrato che, assemblando un peptide chirale sulla superficie delle Au NP, è possibile indurre enantioselettività, sebbene limitata. Nella seconda parte della Tesi viene presentato un saggio modulare basato sullo spiazzamento di un indicatore. Piccole molecole con rilevanza biologica sono selettivamente riconosciute utilizzando Au NP funzionalizzate con tioli che presentano come gruppo terminale il 1,4,7-triazaciclononano (TACN)•Zn2+. Il saggio si basa sul cambio di affinità di recettori macrociclici come, ad esempio cavitandi, ciclodestrine o calixareni, per le nanoparticelle, dopo avere formato il complesso con la loro rispettiva molecola bersaglio. Questo cambio influenza l’equilibrio tra nanoparticelle e una sonda fluorescente e provoca, di conseguenza, un cambio nel segnale di fluorescenza. I moduli di riconoscimento possono essere cambiati in modo da poter controllare la selettività del saggio senza influenzare la natura del segnale in uscita. L’ utilizzo contemporaneo di tre moduli permette di creare un sistema capace di rivelare più analiti simultaneamente e con alta selettività. Lo studio dell’ortogonalità delle differenti coppie recettore/analita permette di dimostrare la possibilità di utilizzo di questo tipo di sistemi nel campo dei computer molecolari. Nella terza parte viene studiata la possibilità di auto assemblare l’interruttore molecolare acido 4-(fenilazo)benzoico sulla superficie di Au NP funzionalizzate con tioli che presentano come gruppo terminale il 1,4,7-triazaciclononano (TACN)•Zn2+, con lo scopo di modulare con la luce (in modo reversibile) l’affinità di piccole molecole per la superficie. Gli studi di spiazzamento di entrambi i probe cumarina343-GDDD e l’acido 6,8-diidrossi-1,3-pirenedisulfonico promosso dal cis/trans acido 4-(fenilazo)benzoico rivelano che i due isomeri hanno diverse affinità per la superficie delle nanoparticelle. Questo punto chiave viene sfruttato per permettere la regolazione tramite luce dell’attività delle nanoparticelle in esame.
Tunable nanosystems for sensing and catalysis
NERI, SIMONA
2016
Abstract
L’ importanza delle Au NP come supporto versatile per applicazioni nell’ambito della catalisi e dei sensori nasce dalle loro esclusive caratteristiche come, ad esempio, alta stabilità, biocompatibilità, facilità di preparazione, specifiche proprietà ottiche and elettroniche dipendenti dalla forma e dalle dimensioni e dal loro alto rapporto area/volume. Inoltre, la superficie delle Au NP può essere facilmente funzionalizzata mediante leganti contenenti vari gruppi funzionali, come tioli, fosfine e ammine che presentano alta affinità per la superficie d’oro. Gli effetti collettivi e cooperativi ottenuti grazie all’organizzazione di componenti organici sulla particella, fornisce multivalenza alla superficie. Le interazioni multivalenti sul monostrato possono, quindi, essere applicate per rafforzare un’interazione tra la superficie funzionalizzata e piccole molecole. In particolare l’auto assemblaggio di piccole molecole su una superficie multivalente permette la realizzazione di sistemi chimici dinamici che possono essere applicati nel campo della catalisi, dei sensori e per la creazione di sistemi regolabili. Nella prima parte della Tesi, viene studiata la capacità catalitica di nanoparticelle composte da un monostrato misto (in particolare composte da 8-trimetilammonio-octiltiolo e tioli di diversa lunghezza contenenti il complesso metallico 4’-metil-2,2’-bipiridina•Cu2+ . In particolare viene studiata l’influenza della geometria indotta dal monostrato misto sulla efficienza e selettività della reazione di Diels-Alder tra cinnamoil-1-metil-1H- imidazolo e il ciclopentadiene. Allo stesso tempo, viene studiato l’effetto dell’ambiente chirale ottenuto grazie all’autoassemblaggio di un peptide chirale (Ac-(LLLL)-Leu-Leu-Gly-Trp-Ser(PO3H2)) sulla enantioselettività della reazione. I risultati dimostrano che in alcuni casi la geometria può influenzare la formazione di prodotti addizionali. Questo può essere giustificato come il risultato di interazioni steriche tra catene alchiliche e catalizzatore, quando quest’ultimo si trova alla pari della superficie del monostrato. Inoltre, è stato dimostrato che, assemblando un peptide chirale sulla superficie delle Au NP, è possibile indurre enantioselettività, sebbene limitata. Nella seconda parte della Tesi viene presentato un saggio modulare basato sullo spiazzamento di un indicatore. Piccole molecole con rilevanza biologica sono selettivamente riconosciute utilizzando Au NP funzionalizzate con tioli che presentano come gruppo terminale il 1,4,7-triazaciclononano (TACN)•Zn2+. Il saggio si basa sul cambio di affinità di recettori macrociclici come, ad esempio cavitandi, ciclodestrine o calixareni, per le nanoparticelle, dopo avere formato il complesso con la loro rispettiva molecola bersaglio. Questo cambio influenza l’equilibrio tra nanoparticelle e una sonda fluorescente e provoca, di conseguenza, un cambio nel segnale di fluorescenza. I moduli di riconoscimento possono essere cambiati in modo da poter controllare la selettività del saggio senza influenzare la natura del segnale in uscita. L’ utilizzo contemporaneo di tre moduli permette di creare un sistema capace di rivelare più analiti simultaneamente e con alta selettività. Lo studio dell’ortogonalità delle differenti coppie recettore/analita permette di dimostrare la possibilità di utilizzo di questo tipo di sistemi nel campo dei computer molecolari. Nella terza parte viene studiata la possibilità di auto assemblare l’interruttore molecolare acido 4-(fenilazo)benzoico sulla superficie di Au NP funzionalizzate con tioli che presentano come gruppo terminale il 1,4,7-triazaciclononano (TACN)•Zn2+, con lo scopo di modulare con la luce (in modo reversibile) l’affinità di piccole molecole per la superficie. Gli studi di spiazzamento di entrambi i probe cumarina343-GDDD e l’acido 6,8-diidrossi-1,3-pirenedisulfonico promosso dal cis/trans acido 4-(fenilazo)benzoico rivelano che i due isomeri hanno diverse affinità per la superficie delle nanoparticelle. Questo punto chiave viene sfruttato per permettere la regolazione tramite luce dell’attività delle nanoparticelle in esame.File | Dimensione | Formato | |
---|---|---|---|
simona_neri_tesi.pdf
accesso aperto
Dimensione
7.77 MB
Formato
Adobe PDF
|
7.77 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/177264
URN:NBN:IT:UNIPD-177264