Dai primi anni 80 i passi avanti fatti nel campo della genetica e della proteomica, hanno portato ad un particolare interesse nei confronti dei prodotti biotecnologici, quali DNA e proteine. L’utilizzo terapeutico di queste entità, seppur non privo di difficoltà, è stato facilitato dalla loro produzione su larga scala. Proteine e sequenze oligonucleotidiche si sono rivelate interessanti come agenti terapeutici essendo molecole dotate d’elevatissima selettività/affinità per il recettore o il sito d’azione specifico. L’impiego farmaceutico può evidenziare alcuni svantaggi che ne possono limitare l’utilizzo, come ad esempio la suscettibilità alla degradazione da parte di proteasi e DNasi, la rapida clearance renale e l’immunogenicità. Per affrontare tali limiti, molti ricercatori hanno cercano soluzioni nel campo dei drug delivery sistems (DDSs). A tal proposito, sono stati sviluppati molti sistemi e la coniugazione al PEG (polietilen glicole) è risultata essere una delle più promettenti. La PEGhilazione, infatti, conferisce alle molecole coniugate maggiore solubilità e stabilità nei confronti della digestione proteolitica, una ridotta tendenza all’aggregazione ed una ridotta immunogenicità. Grazie a questi vantaggi ed alle particolari caratteristiche del PEG, ad oggi sono presenti nel mercato 12 composti PEGhilati: 9 sono proteine, un peptide, un aptamero ed una formulazione liposomiale (contenente doxorubicina). Le migliorie apportate ai profili farmacocinetici di questi farmaci biotech grazie all’uso di DDSs possono essere anche impiegate nel campo dell’ingegneria tessutale, dove le medesime problematiche sono di basilare importanza per lo sviluppo di scaffold per cellule, in grado di rilasciare fattori di crescita. Il polietilen glicole (PEG) è il polimero leader per la coniugazione di proteine. Negli ultimi anni diversi polimeri sono stati studiati per trovare una valida alternativa a questo polimero, ma la sua eccellente biocompatibilità e la conoscenza nel suo utilizzo non ha ancora portato nessun polimero ad essere realmente competitivo nei suoi confronti. Nonostante tutto, anche l’utilizzo del PEG presenta alcuni limiti, quali la non-biodegradabilità e la documentata presenza di anticorpi anti-PEG sviluppati in alcuni casi specifici. Per questo motivo si è alla ricerca di un polimero che possa validamente sostituire il PEG. Nella prima parte di questo lavoro di tesi è stato studiato l’acido ialuronico (HA) per la bioconiugazione di proteine (HAylation). Essendo biodegradabile, l’HA può essere vantaggioso rispetto al PEG. L’HA è un polimero endogeno ed è metabolizzato dalle ialuronidasi, inoltre ha il vantaggio di poter raggiungere una capacità di loading elevate rispetto al PEG, grazie alla presenza di gruppi funzionali ripetitivi in ciascun monomero. In questa parte del lavoro di tesi, la ricerca si è concentrata sullo studio della coniugazione dell’HA a due enzimi modello, Ribonuclease A e tripsina, e poi ad un interessante proteina per uso farmaceutico, l’insulina. Per evitare fenomeni di cross-linking, solo una parte dei gruppi carbossilici del polimero è stata coniugata ad uno spacer aldeidico, consentendo la coniugazione con i gruppi amminici delle proteine. Inoltre, modulando il pH di reazione si sono potuti ottenere coniugati con legame selettivo all’N-terminale (pH 6) oppure random (pH 8), sfruttando la differente pKa degli ammino gruppi nelle proteine. I primi coniugati ottenuti con gli enzimi Ribonuclease A e tripsina sono stati studiati verificandone l’attività residua rispetto alle proteine native. Tutti i coniugati, in particolare quelli ottenuti per legame selettivo all’N-terminale, mantengono una buona attività su piccoli substrati (diminuzione del 30%); solo il derivato HA-tripsina mantiene circa il 60% di attività residua nei confronti del substrato ad alto peso molecolare. Inoltre, sempre per HA-tripsina, si è trovata una maggiore stabilità nel tempo rispetto l’enzima nativo (mediamente 45%) e si è confermata la suscettibilità di entrambe i coniugati nei confronti della ialuronidasi. La valutazione del polimero come potenziale carrier per proteine è proseguita preparando dei coniugati con l’insulina bovina, come esempio di proteina farmacologicamente attiva. Sono stati sintetizzati due coniugati con modalità selettiva all’N-terminale a partire da polimeri con diverso grado di modifica con gruppi aldeidici, pari a 4 e 21% e si sono ottenuti prodotti con il 17 e 32% (p/p), rispettivamente, di loading proteico. L’efficacia terapeutica dei coniugati in comparazione con l’insulina è stata testata su ratti Sprague Dawley con diabete indotto. Il coniugato con un minore loading proteico si è rivelato essere più efficace e con una riduzione dei livelli di glucosio nel sangue più prolungata. Nella seconda parte di questo lavoro di tesi si è studiata un’innovativa strategia di PEGhilazione enzimatica di sequenze oligonucleotidiche al fine di sviluppare questo approccio per il delivery di oligonucleotidi. Il metodo è stato messo a punto con sequenze nucleotidiche modello e l’approccio è stato il seguente: una breve sequenza oligonucleotica viene legata chimicamente ad una catena di PEG. Poi, mediante l’azione catalitica della T4 DNA ligase la porzione di PEG-DNA viene coniugata ad un’altra sequenza oligonucleotidica. Per lo studio di PEGhilazione enzimatica si è ideato un modello costituito da 4 sequenze oligonucleotidiche di riferimento: due coppie complementari terminanti con sticky-ends complementari a loro volta (18-mer + 21-mer e 16-mer + 19-mer). L’oligo di 18 nucleotidi portava in posizione 5’ una funzione tiolica, che è stata impiegata per la coniugazione col polimero. Dopo aver apportato alcune variazioni ai protocolli classici di ligazione si sono ottenuti ottimi risultati: completa ligazione del modello PEGhilato ed assenza di prodotti indesiderati. Un’ulteriore conferma di ligazione del modello PEGhilato si è ottenuta tramite digestione con EcoRI. Infatti, solamente dopo la ligazione è possibile trovare nella sequenza oligonucleotidica il sito di restrizione dell’enzima. In presenza o in assenza di polimero la restrizione è avvenuta completamente. Si è poi voluto indagare se una sequenza PEGhilata con un numero di basi ridotto potesse comunque mantenere i requisiti per essere substrato della T4 DNA ligase. Così, la coppia di sequenze complementari designata alla PEGhilazione è stata ridotta alla meta della sua lunghezza (9-mer + 12-mer). Anche con la sequenza PEGhilata così accorciata la ligazione è avvenuta completamente. In conclusione questo lavoro di tesi ha dimostrato che l’HA può essere una promettente alternativa al più noto PEG per la modifica di proteine. Nell’ambito del delivery di oligonucleotidi lo sviluppo di un approccio enzimatico di coniugazione può aprire nuovi orizzonti in questo settore il cui potenziale non è stato ancora esplorato.

Development of polymeric drug delivery systems for biotech products

PASQUALIN, MATTEO
2013

Abstract

Dai primi anni 80 i passi avanti fatti nel campo della genetica e della proteomica, hanno portato ad un particolare interesse nei confronti dei prodotti biotecnologici, quali DNA e proteine. L’utilizzo terapeutico di queste entità, seppur non privo di difficoltà, è stato facilitato dalla loro produzione su larga scala. Proteine e sequenze oligonucleotidiche si sono rivelate interessanti come agenti terapeutici essendo molecole dotate d’elevatissima selettività/affinità per il recettore o il sito d’azione specifico. L’impiego farmaceutico può evidenziare alcuni svantaggi che ne possono limitare l’utilizzo, come ad esempio la suscettibilità alla degradazione da parte di proteasi e DNasi, la rapida clearance renale e l’immunogenicità. Per affrontare tali limiti, molti ricercatori hanno cercano soluzioni nel campo dei drug delivery sistems (DDSs). A tal proposito, sono stati sviluppati molti sistemi e la coniugazione al PEG (polietilen glicole) è risultata essere una delle più promettenti. La PEGhilazione, infatti, conferisce alle molecole coniugate maggiore solubilità e stabilità nei confronti della digestione proteolitica, una ridotta tendenza all’aggregazione ed una ridotta immunogenicità. Grazie a questi vantaggi ed alle particolari caratteristiche del PEG, ad oggi sono presenti nel mercato 12 composti PEGhilati: 9 sono proteine, un peptide, un aptamero ed una formulazione liposomiale (contenente doxorubicina). Le migliorie apportate ai profili farmacocinetici di questi farmaci biotech grazie all’uso di DDSs possono essere anche impiegate nel campo dell’ingegneria tessutale, dove le medesime problematiche sono di basilare importanza per lo sviluppo di scaffold per cellule, in grado di rilasciare fattori di crescita. Il polietilen glicole (PEG) è il polimero leader per la coniugazione di proteine. Negli ultimi anni diversi polimeri sono stati studiati per trovare una valida alternativa a questo polimero, ma la sua eccellente biocompatibilità e la conoscenza nel suo utilizzo non ha ancora portato nessun polimero ad essere realmente competitivo nei suoi confronti. Nonostante tutto, anche l’utilizzo del PEG presenta alcuni limiti, quali la non-biodegradabilità e la documentata presenza di anticorpi anti-PEG sviluppati in alcuni casi specifici. Per questo motivo si è alla ricerca di un polimero che possa validamente sostituire il PEG. Nella prima parte di questo lavoro di tesi è stato studiato l’acido ialuronico (HA) per la bioconiugazione di proteine (HAylation). Essendo biodegradabile, l’HA può essere vantaggioso rispetto al PEG. L’HA è un polimero endogeno ed è metabolizzato dalle ialuronidasi, inoltre ha il vantaggio di poter raggiungere una capacità di loading elevate rispetto al PEG, grazie alla presenza di gruppi funzionali ripetitivi in ciascun monomero. In questa parte del lavoro di tesi, la ricerca si è concentrata sullo studio della coniugazione dell’HA a due enzimi modello, Ribonuclease A e tripsina, e poi ad un interessante proteina per uso farmaceutico, l’insulina. Per evitare fenomeni di cross-linking, solo una parte dei gruppi carbossilici del polimero è stata coniugata ad uno spacer aldeidico, consentendo la coniugazione con i gruppi amminici delle proteine. Inoltre, modulando il pH di reazione si sono potuti ottenere coniugati con legame selettivo all’N-terminale (pH 6) oppure random (pH 8), sfruttando la differente pKa degli ammino gruppi nelle proteine. I primi coniugati ottenuti con gli enzimi Ribonuclease A e tripsina sono stati studiati verificandone l’attività residua rispetto alle proteine native. Tutti i coniugati, in particolare quelli ottenuti per legame selettivo all’N-terminale, mantengono una buona attività su piccoli substrati (diminuzione del 30%); solo il derivato HA-tripsina mantiene circa il 60% di attività residua nei confronti del substrato ad alto peso molecolare. Inoltre, sempre per HA-tripsina, si è trovata una maggiore stabilità nel tempo rispetto l’enzima nativo (mediamente 45%) e si è confermata la suscettibilità di entrambe i coniugati nei confronti della ialuronidasi. La valutazione del polimero come potenziale carrier per proteine è proseguita preparando dei coniugati con l’insulina bovina, come esempio di proteina farmacologicamente attiva. Sono stati sintetizzati due coniugati con modalità selettiva all’N-terminale a partire da polimeri con diverso grado di modifica con gruppi aldeidici, pari a 4 e 21% e si sono ottenuti prodotti con il 17 e 32% (p/p), rispettivamente, di loading proteico. L’efficacia terapeutica dei coniugati in comparazione con l’insulina è stata testata su ratti Sprague Dawley con diabete indotto. Il coniugato con un minore loading proteico si è rivelato essere più efficace e con una riduzione dei livelli di glucosio nel sangue più prolungata. Nella seconda parte di questo lavoro di tesi si è studiata un’innovativa strategia di PEGhilazione enzimatica di sequenze oligonucleotidiche al fine di sviluppare questo approccio per il delivery di oligonucleotidi. Il metodo è stato messo a punto con sequenze nucleotidiche modello e l’approccio è stato il seguente: una breve sequenza oligonucleotica viene legata chimicamente ad una catena di PEG. Poi, mediante l’azione catalitica della T4 DNA ligase la porzione di PEG-DNA viene coniugata ad un’altra sequenza oligonucleotidica. Per lo studio di PEGhilazione enzimatica si è ideato un modello costituito da 4 sequenze oligonucleotidiche di riferimento: due coppie complementari terminanti con sticky-ends complementari a loro volta (18-mer + 21-mer e 16-mer + 19-mer). L’oligo di 18 nucleotidi portava in posizione 5’ una funzione tiolica, che è stata impiegata per la coniugazione col polimero. Dopo aver apportato alcune variazioni ai protocolli classici di ligazione si sono ottenuti ottimi risultati: completa ligazione del modello PEGhilato ed assenza di prodotti indesiderati. Un’ulteriore conferma di ligazione del modello PEGhilato si è ottenuta tramite digestione con EcoRI. Infatti, solamente dopo la ligazione è possibile trovare nella sequenza oligonucleotidica il sito di restrizione dell’enzima. In presenza o in assenza di polimero la restrizione è avvenuta completamente. Si è poi voluto indagare se una sequenza PEGhilata con un numero di basi ridotto potesse comunque mantenere i requisiti per essere substrato della T4 DNA ligase. Così, la coppia di sequenze complementari designata alla PEGhilazione è stata ridotta alla meta della sua lunghezza (9-mer + 12-mer). Anche con la sequenza PEGhilata così accorciata la ligazione è avvenuta completamente. In conclusione questo lavoro di tesi ha dimostrato che l’HA può essere una promettente alternativa al più noto PEG per la modifica di proteine. Nell’ambito del delivery di oligonucleotidi lo sviluppo di un approccio enzimatico di coniugazione può aprire nuovi orizzonti in questo settore il cui potenziale non è stato ancora esplorato.
28-gen-2013
Inglese
PEGylation, hyaluronic acid, protein conjugation, oligonucleotide conjugation, polymeric drug delivery systems
SCHIAVON, ODDONE
CONCONI, MARIA TERESA
Università degli studi di Padova
103
File in questo prodotto:
File Dimensione Formato  
Pasqualin_Matteo_tesi.pdf

accesso aperto

Dimensione 3.05 MB
Formato Adobe PDF
3.05 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/177272
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-177272