Bone defects are an unsolved clinical problem. To promote the bone regeneration tissue engineering for develops scaffolds to assist the healing of tissues. Porous three-dimensional scaffolds composed by alginate and hydroxyapatite help the regeneration of damaged bone. Scaffolds should also be endowed with antimicrobial properties, but avoiding the use of ordinary antibiotics. The bacterial antibiotic resistance, in fact makes useless most of the current antibiotics. The need of new antimicrobials is evident, and antimicrobial peptides (AMPs) attract increasing attention because of their antibacterial properties. Among AMPs, the proline-rich AMPs (PrAMPs) are interesting because they combine antimicrobial potency with high biocompatibility. Aim of this project was to load an optimized PrAMP on alginate/hydroxyapatite (Alg/HAp) scaffolds to provide them with antimicrobial effect retaining their capability to promote bone regeneration. To boost and tailor the antimicrobial activity of PrAMPs, the Bac7(1-16) was modified replacing some residues and adding then a lipid moiety to its N-terminus. Only the first approach was successful providing the B7-005, a new PrAMPs displaying better antimicrobial activity. On the other hand, the lipidation of B7-005 was detrimental. Alg/HAp scaffolds were produced and efficiently loaded with B7-005. However, once adsorbed on the scaffold, the peptide could not be released due to the strong interaction between alginate and B7-005. The attempts to modulate the interaction were useless. Alginate-based structures were not compatible with cationic AMPs. To prepare scaffolds compatible with B7-005, the alginate was replaced with agarose. Agarose/Hydroxyapatite (Aga/HAp) porous three-dimensional scaffolds were prepared. They displayed porosity similar to Alg/HAp scaffold. Aga/HAp were then suitable for bone-regeneration purposes. Aga/HAp scaffolds were loaded with B7-005 and they displayed effective release of peptide. Alg/HAp scaffolds were also compatible with human cells, that proliferated on them in the presence and in the absence of B7-005. Aga/HAp scaffolds displayed limited swelling and very low mechanical resistance. However they showed no signs of degradation after to 2 months. As last, B7-005 Aga/HAp scaffold inhibited the growth of bacterial pathogens, although their antimicrobial properties may be improved. The agarose is therefore more suitable than alginate to be used in combination with cationic antimicrobial peptides. Agarose can replace alginate in a protocol to produce three-dimensional porous scaffolds, maintaining desirable properties of Alg/HAp scaffolds.
I difetti ossei sono un problema clinico irrisolto. Per promuovere la rigenerazione ossea, l'ingegneria tissutale sviluppa scaffold per aiutare la guarigione dei tessuti. Gli caffold porosi tridimensionali composti da alginato e idrossiapatite aiutano la rigenerazione dell'osso danneggiato. Gli scaffold tuttavia dovrebbero essere dotati anche di proprietà antimicrobiche, ma evitando l'uso di antibiotici ordinari. La resistenza batterica agli antibiotici, infatti, rende inutili la maggior parte degli attuali antibiotici. La necessità di nuovi antimicrobici è evidente e i peptidi antimicrobici (AMP) attirano sempre più attenzione a causa delle loro proprietà antibatteriche. Tra gli AMP, quelli ricchi di prolina (PrAMP) sono interessanti perché combinano potenza antimicrobica ed elevata biocompatibilità. Lo scopo di questo progetto era caricare un PrAMP ottimizzato su scaffold di alginato / idrossiapatite (Alg / HAp) per fornire loro un effetto antimicrobico mantenendo la loro capacità di promuovere la rigenerazione ossea. Per potenziare e adattare l'attività antimicrobica dei PrAMP, il Bac7 (1-16) è stato modificato sostituendo alcuni residui e aggiungendo quindi una frazione lipidica al suo N-terminale. Solo il primo approccio ha avuto successo fornendo il B7-005, un nuovo PrAMP che mostra una migliore attività antimicrobica. Per contro, la lipidizzazione di B7-005 è stata dannosa. Gli scaffold Alg / HAp sono stati prodotti e caricati in modo efficiente con B7-005. Tuttavia, una volta adsorbito sullo scaffold, il peptide non poteva essere rilasciato a causa della forte interazione tra alginato e B7-005. I tentativi di modulare l'interazione furono inutili. Le strutture a base di alginato non erano compatibili con gli AMP cationici. Per preparare scaffold compatibili con B7-005, l'alginato è stato sostituito con agarosio. Sono stati preparati scaffold tridimensionali porosi di agarosio/idrossiapatite (Aga/HAp). Essi hanno mostrato porosità simile agli scaffold Alg / HAp. Tali strutture si sono rivelate quindi idonee per scopi di rigenerazione ossea. Gli scaffold di Aga/HAp sono stati caricati con B7-005 e hanno mostrato un rilascio efficace di peptide. Gli scaffold Alg/HAp erano compatibili anche con le cellule umane, che proliferavano su di esse in presenza e in assenza di B7-005. Gli scaffold Aga / HAp hanno mostrato un rigonfiamento limitato e una resistenza meccanica molto bassa. Tuttavia non hanno mostrato segni di degrado dopo 2 mesi. Infine, gli scaffold B7-005 Aga/HAp hanno inibito la crescita di patogeni batterici, sebbene le loro proprietà antimicrobiche possano essere migliorate. L'agarosio è quindi più adatto dell'alginato ad essere utilizzato in combinazione con peptidi antimicrobici cationici. Tale polimero può sostituire l'alginato in un protocollo per produrre scaffold porosi tridimensionali, mantenendo le proprietà desiderabili degli scaffold Alg / HAp.
Sviluppo e caratterizzazione di scaffold a base di polisaccaridi con proprietà antimicrobiche per la rigenerazione tissutale
MARDIROSSIAN, MARIO
2022
Abstract
Bone defects are an unsolved clinical problem. To promote the bone regeneration tissue engineering for develops scaffolds to assist the healing of tissues. Porous three-dimensional scaffolds composed by alginate and hydroxyapatite help the regeneration of damaged bone. Scaffolds should also be endowed with antimicrobial properties, but avoiding the use of ordinary antibiotics. The bacterial antibiotic resistance, in fact makes useless most of the current antibiotics. The need of new antimicrobials is evident, and antimicrobial peptides (AMPs) attract increasing attention because of their antibacterial properties. Among AMPs, the proline-rich AMPs (PrAMPs) are interesting because they combine antimicrobial potency with high biocompatibility. Aim of this project was to load an optimized PrAMP on alginate/hydroxyapatite (Alg/HAp) scaffolds to provide them with antimicrobial effect retaining their capability to promote bone regeneration. To boost and tailor the antimicrobial activity of PrAMPs, the Bac7(1-16) was modified replacing some residues and adding then a lipid moiety to its N-terminus. Only the first approach was successful providing the B7-005, a new PrAMPs displaying better antimicrobial activity. On the other hand, the lipidation of B7-005 was detrimental. Alg/HAp scaffolds were produced and efficiently loaded with B7-005. However, once adsorbed on the scaffold, the peptide could not be released due to the strong interaction between alginate and B7-005. The attempts to modulate the interaction were useless. Alginate-based structures were not compatible with cationic AMPs. To prepare scaffolds compatible with B7-005, the alginate was replaced with agarose. Agarose/Hydroxyapatite (Aga/HAp) porous three-dimensional scaffolds were prepared. They displayed porosity similar to Alg/HAp scaffold. Aga/HAp were then suitable for bone-regeneration purposes. Aga/HAp scaffolds were loaded with B7-005 and they displayed effective release of peptide. Alg/HAp scaffolds were also compatible with human cells, that proliferated on them in the presence and in the absence of B7-005. Aga/HAp scaffolds displayed limited swelling and very low mechanical resistance. However they showed no signs of degradation after to 2 months. As last, B7-005 Aga/HAp scaffold inhibited the growth of bacterial pathogens, although their antimicrobial properties may be improved. The agarose is therefore more suitable than alginate to be used in combination with cationic antimicrobial peptides. Agarose can replace alginate in a protocol to produce three-dimensional porous scaffolds, maintaining desirable properties of Alg/HAp scaffolds.File | Dimensione | Formato | |
---|---|---|---|
REVISED Tesis Mardirossian.pdf
Open Access dal 26/03/2023
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/177273
URN:NBN:IT:UNITS-177273