The work, effort, and research put into passive radar for stationary receivers have shown significant developments and progress in recent years. The next challenge is mounting a passive radar on moving platforms for the purpose of target detection and ground imaging, e.g. for covert border control. A passive radar on a moving platform has many advantages and offers many benefits, however there is also a considerable drawback that has limited its application so far. Due to the movement the clutter returns are spread in Doppler and may overlap moving targets, which are then difficult to detect. While this problem is common for an active radar as well, with a passive radar a further problem arises: It is impossible to control the exploited time-varying waveform emitted from a telecommunication transmitter. A conventional processing approach is ineffective as the time-varying waveform leads to residuals all over the processed data. Therefore a dedicated clutter cancellation method, e.g. the displaced phase centre antenna (DPCA) approach, does not have the ability to completely remove the clutter, so that target detection is considerably limited. The aim must be therefore to overcome this limitation by exploiting a processing technique, which is able to remove these residuals in order to cope with the clutter returns thus making target detection feasible. The findings of this research and thesis show that a reciprocal filtering based stage is able to provide a time-invariant impulse response similar to the transmissions of an active radar. Due to this benefit it is possible to achieve an overall complete clutter removal together with a dedicated DPCA stage, so that moving target detection is considerably improved, making it possible in the first place. Based on mathematical analysis and on simulations it is proven, that by exploiting this processing in principle an infinite clutter cancellation can be achieved. This result shows that the reciprocal filter is an essential processing stage. Applications on real data acquired from two different measurement campaigns prove these results. By the proposed approach, the limiting factor (i.e. the time-varying waveform) for target detection is negotiated, and in principle any clutter cancellation technique known from active radar can be applied. Therefore this analysis and the results provide a substantial contribution to the passive radar research community and enables it to address the next questions.
Passive radar on moving platforms exploiting DVB-T transmitters of opportunity
WOJACZEK, PHILIPP MAXIMILIAN
2019
Abstract
The work, effort, and research put into passive radar for stationary receivers have shown significant developments and progress in recent years. The next challenge is mounting a passive radar on moving platforms for the purpose of target detection and ground imaging, e.g. for covert border control. A passive radar on a moving platform has many advantages and offers many benefits, however there is also a considerable drawback that has limited its application so far. Due to the movement the clutter returns are spread in Doppler and may overlap moving targets, which are then difficult to detect. While this problem is common for an active radar as well, with a passive radar a further problem arises: It is impossible to control the exploited time-varying waveform emitted from a telecommunication transmitter. A conventional processing approach is ineffective as the time-varying waveform leads to residuals all over the processed data. Therefore a dedicated clutter cancellation method, e.g. the displaced phase centre antenna (DPCA) approach, does not have the ability to completely remove the clutter, so that target detection is considerably limited. The aim must be therefore to overcome this limitation by exploiting a processing technique, which is able to remove these residuals in order to cope with the clutter returns thus making target detection feasible. The findings of this research and thesis show that a reciprocal filtering based stage is able to provide a time-invariant impulse response similar to the transmissions of an active radar. Due to this benefit it is possible to achieve an overall complete clutter removal together with a dedicated DPCA stage, so that moving target detection is considerably improved, making it possible in the first place. Based on mathematical analysis and on simulations it is proven, that by exploiting this processing in principle an infinite clutter cancellation can be achieved. This result shows that the reciprocal filter is an essential processing stage. Applications on real data acquired from two different measurement campaigns prove these results. By the proposed approach, the limiting factor (i.e. the time-varying waveform) for target detection is negotiated, and in principle any clutter cancellation technique known from active radar can be applied. Therefore this analysis and the results provide a substantial contribution to the passive radar research community and enables it to address the next questions.File | Dimensione | Formato | |
---|---|---|---|
Tesi_dottorato_Wojaczek.pdf
accesso aperto
Dimensione
30.82 MB
Formato
Adobe PDF
|
30.82 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/180228
URN:NBN:IT:UNIROMA1-180228