L'argomento della Tesi riguarda líelaborazione di sequenze di immagini, relative ad una scena in cui uno o pi˘ oggetti (possibilmente deformabili) si muovono e acquisite da un opportuno strumento di misura. A causa del processo di misura, le immagini sono corrotte da un livello di degradazione. Si riporta la formalizzazione matematica dellíinsieme delle immagini considerate, dellíinsieme dei moti ammissibili e della degradazione introdotta dallo strumento di misura. Ogni immagine della sequenza acquisita ha una relazione con tutte le altre, stabilita dalla legge del moto della scena. Líidea proposta in questa Tesi Ë quella di sfruttare questa relazione tra le diverse immagini della sequenza per ricostruire grandezze di interesse che caratterizzano la scena. Nel caso in cui si conosce il moto, líinteresse Ë quello di ricostruire i contorni dellíimmagine iniziale (che poi possono essere propagati attraverso la stessa legge del moto, in modo da ricostruire i contorni della generica immagine appartenente alla sequenza in esame), stimando líampiezza e del salto del livello di grigio e la relativa localizzazione. Nel caso duale si suppone invece di conoscere la disposizione dei contorni nellíimmagine iniziale e di avere un modello stocastico che descriva il moto; líobiettivo Ë quindi stimare i parametri che caratterizzano tale modello. Infine, si presentano i risultati dellíapplicazione delle due metodologie succitate a dati reali ottenuti in ambito biomedicale da uno strumento denominato pupillometro. Tali risultati sono di elevato interesse nellíottica di utilizzare il suddetto strumento a fini diagnostici.

Filtering of image sequences: on line edge detection and motion reconstruction

LUCCHETTI, matteo
2005

Abstract

L'argomento della Tesi riguarda líelaborazione di sequenze di immagini, relative ad una scena in cui uno o pi˘ oggetti (possibilmente deformabili) si muovono e acquisite da un opportuno strumento di misura. A causa del processo di misura, le immagini sono corrotte da un livello di degradazione. Si riporta la formalizzazione matematica dellíinsieme delle immagini considerate, dellíinsieme dei moti ammissibili e della degradazione introdotta dallo strumento di misura. Ogni immagine della sequenza acquisita ha una relazione con tutte le altre, stabilita dalla legge del moto della scena. Líidea proposta in questa Tesi Ë quella di sfruttare questa relazione tra le diverse immagini della sequenza per ricostruire grandezze di interesse che caratterizzano la scena. Nel caso in cui si conosce il moto, líinteresse Ë quello di ricostruire i contorni dellíimmagine iniziale (che poi possono essere propagati attraverso la stessa legge del moto, in modo da ricostruire i contorni della generica immagine appartenente alla sequenza in esame), stimando líampiezza e del salto del livello di grigio e la relativa localizzazione. Nel caso duale si suppone invece di conoscere la disposizione dei contorni nellíimmagine iniziale e di avere un modello stocastico che descriva il moto; líobiettivo Ë quindi stimare i parametri che caratterizzano tale modello. Infine, si presentano i risultati dellíapplicazione delle due metodologie succitate a dati reali ottenuti in ambito biomedicale da uno strumento denominato pupillometro. Tali risultati sono di elevato interesse nellíottica di utilizzare il suddetto strumento a fini diagnostici.
15-mar-2005
Inglese
image sequence filter edge motion
BRUNI, Carlo
Università degli Studi di Roma "La Sapienza"
File in questo prodotto:
File Dimensione Formato  
LucchettiMatteo45.pdf

accesso aperto

Dimensione 2.72 MB
Formato Adobe PDF
2.72 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/180512
Il codice NBN di questa tesi è URN:NBN:IT:UNIROMA1-180512