Stem cells capable of generating neural differentiated cells are recognized by the expression of nestin and reside in specific regions of the brain, namely hippocampus, subventricular zone (SVZ), and olfactory bulb. Our work hypotesis is based on the assumption that other brain sites could host NSC niches. We were interested in exploring the region between leptomeninges and the first layers of the cerebral cortex. In this region, spatial-temporal interactions amongst environmental cells ensure the correct cortex development. In this work, we show that nestin-positive cells are present in rat leptomeninges during development up to adulthood. The newly identified nestin-positive cells can be extracted and expanded in vitro both as neurospheres, displaying high similarity with SVZ-derived neural stem cells, and as homogeneous cell population with stem cell features. In vitro expanded stem cell population can differentiate with high efficiency into excitable cells with neuronal phenotype and morphology. Once injected into adult brain, these cells survive and differentiate into neurons, thus showing that their neuronal differentiation potential is operational also in vivo. In conclusion, our data provide evidence that a specific population of immature cells endowed of neuronal differentiation potential is resident in the leptomeninges throughout the life. As leptomemniges cover the entire central nervous system, these findings could have relevant implications for studies on cortical development and for regenerative medicine applied to neurological disorders.

Characterization of a novel stem cell population with neuronal differentiation potential residing in the leptomeningeal niche

BIFARI, Francesco
2009

Abstract

Stem cells capable of generating neural differentiated cells are recognized by the expression of nestin and reside in specific regions of the brain, namely hippocampus, subventricular zone (SVZ), and olfactory bulb. Our work hypotesis is based on the assumption that other brain sites could host NSC niches. We were interested in exploring the region between leptomeninges and the first layers of the cerebral cortex. In this region, spatial-temporal interactions amongst environmental cells ensure the correct cortex development. In this work, we show that nestin-positive cells are present in rat leptomeninges during development up to adulthood. The newly identified nestin-positive cells can be extracted and expanded in vitro both as neurospheres, displaying high similarity with SVZ-derived neural stem cells, and as homogeneous cell population with stem cell features. In vitro expanded stem cell population can differentiate with high efficiency into excitable cells with neuronal phenotype and morphology. Once injected into adult brain, these cells survive and differentiate into neurons, thus showing that their neuronal differentiation potential is operational also in vivo. In conclusion, our data provide evidence that a specific population of immature cells endowed of neuronal differentiation potential is resident in the leptomeninges throughout the life. As leptomemniges cover the entire central nervous system, these findings could have relevant implications for studies on cortical development and for regenerative medicine applied to neurological disorders.
2009
Inglese
novel stem cell population; leptomeningeal niche
96
File in questo prodotto:
File Dimensione Formato  
Tesi Dottorato Bifari Francesco XXI Ciclo.pdf

accesso solo da BNCF e BNCR

Dimensione 3.51 MB
Formato Adobe PDF
3.51 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/181620
Il codice NBN di questa tesi è URN:NBN:IT:UNIVR-181620