Despite the great relevance of temporal logics in many applications of computer science, their theoretical analysis is far from being concluded. In particular, we still lack a satisfactory proof theory for temporal logics and this is especially true in the case of branching-time logics. The main contribution of this thesis consists in presenting a modular approach to the definition of labeled (natural) deduction systems for a large class of temporal logics. We start by proposing a system for the basic Priorean tense logic and show how to modularly enrich it in order to deal with more complex logics, like LTL. We also consider the extension to the branching case, focusing on the Ockhamist branching-time logics with a bundled semantics. A detailed proof-theoretical analysis of the systems is performed. In particular, in the case of discrete-time logics, for which rules modeling an induction principle are required, we define a procedure of normalization inspired to those of systems for Heyting Arithmetic. As a consequence of normalization, we obtain a purely syntactical proof of the consistency of the systems.
Labeled natural deduction for temporal logics
VOLPE, Marco
2010
Abstract
Despite the great relevance of temporal logics in many applications of computer science, their theoretical analysis is far from being concluded. In particular, we still lack a satisfactory proof theory for temporal logics and this is especially true in the case of branching-time logics. The main contribution of this thesis consists in presenting a modular approach to the definition of labeled (natural) deduction systems for a large class of temporal logics. We start by proposing a system for the basic Priorean tense logic and show how to modularly enrich it in order to deal with more complex logics, like LTL. We also consider the extension to the branching case, focusing on the Ockhamist branching-time logics with a bundled semantics. A detailed proof-theoretical analysis of the systems is performed. In particular, in the case of discrete-time logics, for which rules modeling an induction principle are required, we define a procedure of normalization inspired to those of systems for Heyting Arithmetic. As a consequence of normalization, we obtain a purely syntactical proof of the consistency of the systems.File | Dimensione | Formato | |
---|---|---|---|
volpe-phd-thesis.pdf
accesso aperto
Dimensione
1.86 MB
Formato
Adobe PDF
|
1.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/182103
URN:NBN:IT:UNIVR-182103