Acute or chronic alterations in energy status lead to changes in the balance between excitatory and inhibitory synaptic transmission and associated synaptic plasticity, facilitating adaptation of energy metabolism to new homeostatic requirements. The impact of such changes, especially during obesity, on endocannabinoid signalling at CB1 receptors, a master modulator of synaptic transmission and strength, and a target for anti-obesity drugs, is not well understood. Endocannabinoids stimulate food intake and their synthesis and release increase after food-deprivation thus inducing activation of CB1 receptors. In particular, endocannabinoid levels increase in the hypothalamus and blood during short-term fasting (1, 2) and decrease after leptin administration and feeding (3, 4). Impairment of leptin signaling (db/db mice expressing a defective leptin receptor), leptin deficiency (ob/ob), and leptin resistance (acquired resistance due to diet-induced obesity, HFD mice) in mice showed elevated levels of Endocannabinoids in the hypothalamus and in adipose tissue (5). Recent papers show that leptin modulates also the axonal growth and synaptic plasticity within the hypothalamus (6,7). In particular, leptin increases neurite extension in the Arcuate Nucleus during mouse perinatal development, thus playing an early trophic role within those circuits that will be the target of leptin physiological actions in adult life (6). Leptin also may act on the Orexinergic-synthesizing (OX) neurons of the lateral hypothalamus, which send widespread projections to the brain (8) playing a strategic integrative role in the feeding. Leptin suppress the activity of OX neurons, the biosynthesis of OX or both. Moreover, an OX1R-selective antagonist reduced food intake and ameliorated obesity of leptin-deficient ob/ob mice (9), suggesting that leptin deficiency at least partly activates the orexin pathway to increase food intake. On the other hand, pretreatment with subeffective doses of rimonabant, a selective CB1 antagonist, attenuates the orexigenic actions of OX (10), whereas electrophysiological data support the inhibitory role of cannabinoids on orexinergic neurons in physiological conditions (11). Staring from these bases, we investigated if a remodeling of orexinergic neuronal wiring occurs in the LH during a prolonged nutritional perturbation caused by, or resulting in, leptin signalling deficiency, as in ob/ob and HFD mice, respectively, and its impact on neuromodulatory function of the endocannabinoid system, since high neural plasticity occurs in this circuitry for adequate regulation of energy balance (12).
Endocannabinoid-controlled modulation of orexinergic neurons in obesity: switch from excitatory to inhibitory wiring
IMPERATORE, Roberta
2012
Abstract
Acute or chronic alterations in energy status lead to changes in the balance between excitatory and inhibitory synaptic transmission and associated synaptic plasticity, facilitating adaptation of energy metabolism to new homeostatic requirements. The impact of such changes, especially during obesity, on endocannabinoid signalling at CB1 receptors, a master modulator of synaptic transmission and strength, and a target for anti-obesity drugs, is not well understood. Endocannabinoids stimulate food intake and their synthesis and release increase after food-deprivation thus inducing activation of CB1 receptors. In particular, endocannabinoid levels increase in the hypothalamus and blood during short-term fasting (1, 2) and decrease after leptin administration and feeding (3, 4). Impairment of leptin signaling (db/db mice expressing a defective leptin receptor), leptin deficiency (ob/ob), and leptin resistance (acquired resistance due to diet-induced obesity, HFD mice) in mice showed elevated levels of Endocannabinoids in the hypothalamus and in adipose tissue (5). Recent papers show that leptin modulates also the axonal growth and synaptic plasticity within the hypothalamus (6,7). In particular, leptin increases neurite extension in the Arcuate Nucleus during mouse perinatal development, thus playing an early trophic role within those circuits that will be the target of leptin physiological actions in adult life (6). Leptin also may act on the Orexinergic-synthesizing (OX) neurons of the lateral hypothalamus, which send widespread projections to the brain (8) playing a strategic integrative role in the feeding. Leptin suppress the activity of OX neurons, the biosynthesis of OX or both. Moreover, an OX1R-selective antagonist reduced food intake and ameliorated obesity of leptin-deficient ob/ob mice (9), suggesting that leptin deficiency at least partly activates the orexin pathway to increase food intake. On the other hand, pretreatment with subeffective doses of rimonabant, a selective CB1 antagonist, attenuates the orexigenic actions of OX (10), whereas electrophysiological data support the inhibitory role of cannabinoids on orexinergic neurons in physiological conditions (11). Staring from these bases, we investigated if a remodeling of orexinergic neuronal wiring occurs in the LH during a prolonged nutritional perturbation caused by, or resulting in, leptin signalling deficiency, as in ob/ob and HFD mice, respectively, and its impact on neuromodulatory function of the endocannabinoid system, since high neural plasticity occurs in this circuitry for adequate regulation of energy balance (12).File | Dimensione | Formato | |
---|---|---|---|
tesi dottorato Roberta Imperatore def.pdf
accesso aperto
Dimensione
7.02 MB
Formato
Adobe PDF
|
7.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/182560
URN:NBN:IT:UNIVR-182560