Abstract Type 1 insulin-dependent diabetes (T1D) which afflicts 0.03-0.04% of population is caused by autoimmune destruction of insulin-secreting beta cells, leading to an insulin deficiency (Gepts, 1965). It is considered a chronic disease with a strong social impact because of high prevalence of late-onset complications and the young age of affected patients being the most frequent chronic disease in children younger than 14-years old. Until now there are no possibilities to cure it and insulin treatment is only a life-long replacement therapy. Tolerance induction through autoantigen administration is one of the strategies useful to prevent or to slow down autoimmune diseases (Harrison, 2005). In particular, for T1D GAD65 has been evaluated as a good candidate vaccine and different Antigen-Specific Immunotherapy (ASI) studies using this autoantigen have been done to test its efficacy in tolerance induction. Results obtained in the non-obese diabetic (NOD) mouse models indicate the potential of GAD65 administration to provide a preventive treatment for diabetes. Recently, Diamyd Medical, a Swedish company, has conducted phase II and phase III clinical trials in humans: in the first case it was demonstrated that two subcutaneous injections of 20µg of alum-formulated GAD65 can reverse the progress of recent-onset T1D in 10 to 18-years-old patients and give protection against it (Ludvigsson et al., 2008), while phase III trials failed. New clinical studies have been proposed including new challenges in timing, different types of therapies and new administration routes. Current proposals include preventive therapies in high-risk individuals (current Phase II trial), combination therapies exploiting the combination of Non-Antigen Specific Immunotherapy (NASI) through an immunosoppressor, together with Antigen-Specific Immunotherapy (ASI), using for example GAD65, and ASI using multiple autoantigens (Lernmark and Larsson, 2011; Larsson and Lernmark, 2011). In addition the route of administration needs further studies, such as oral tolerance induction through GAD65, as it has been done using oral insulin. At present, human GAD65 production is a central point for planning future T1D prevention strategies because of the undergoing and future trials using different vaccine preparations based on T1D autoantigens. Until now human GAD65 (hGAD65) has been obtained from different homologous and heterologous platforms. However, actual production platforms are too expensive and unable to provide sufficient quantity of this autoantigen to meet demand for immunotherapy treatments. Both forms of human GAD65, hGAD65 and hGAD65mut, are expressed in E.coli heterologous system to sort out if they are both accumulated as insoluble proteins, as previously described for human GAD65 (Mauch L. et al., 1993), and if hGAD65mut yield is higher than that of the wild type form of the enzyme, as previously reported in Nicotiana tabacum var. Sr1 plants (Avesani L. et al., 2010). They demonstrated to be both accumulated as insoluble inclusion bodies and were solubilized by the use of denaturing concentration of urea. Western and radioimmunoassay analyses demonstrated that hGAD65mut accumulated at higher levels than hGAD65. Plant-based systems may offer advantages in terms of economy and scalability for the large-scale production of therapeutic proteins in high demand (Ma J.C.K. et al., 2005 a, b; Barasan and Rodriguez-Cerezo, 2008). Thus, the principal aim of the PhD project is the evaluation of plant-based platform feasibility for human GAD65 production. Human GAD65 has previously been expressed in transgenic tobacco plants but yields were disappointing (maximum 0.25% of total soluble protein, TSP) (Porceddu et al., 1999; Ma S. et al., 2004; Wang et al., 2008; Avesani L. et al., 2003). In a recent study, a mutated catalytically-inactive form of human GAD65 (hGAD65mut) was expressed in transgenic Nicotiana tabacum var. Sr1 plants. hGAD65mut-highest expressing plants accumulated 10-fold (2.2% TSP) higher levels of recombinant protein than hGAD65-highest expressing plants (Avesani L. et al., 2010). This plant platform production system needs to be characterized thoroughly in order to verify the hypothesis by which the catalytic properties of native hGAD65 could contribute to its poor yields. Since in previous studies it has been demonstrated in vitro the lack of the enzymatic activity for hGAD65mut, an enzymatic assay in vivo is performed in order to demonstrated the absence of enzymatic activity of the mutated form of GAD65 also in the heterologous plant-based system. Results of the assay are discussed. An additional plant-based platform is tested for the production of both forms of human GAD65. In fact, being Nicotiana tabacum var. Maryland mammoth a higher leaf biomass producing variety than the most widely used one, Sr1, it can be, potentially, an excellent candidate for the production of recombinant pharmaceutical proteins with a large demand. Both forms of human GAD65, hGAD65 and hGAD65mut, are expressed in this plant-based platform, demonstrating that also in this system hGAD65mut yield is higher than that of the wild type form of the enzyme, as previously already described in Nicotiana tabacum var. Sr1 plants (Avesani L. et al., 2010). 1% TSP yield is usually regarded as the minimum required to make the extraction of a plant-derived pharmaceutical protein economically feasible (Ma J.K.C. et al., 2003). Since this threshold was exceeded in the first generation of hGAD65mut-transgenic Nicotiana tabacum var. Sr1 plants, a protocol for downstream processing of the recombinant protein from plant systems was investigated. Results obtained during the set up of the extraction and purification protocol are discussed.

Expression and purification of the mutated form of human GAD65 in different biological systems

GECCHELE, Elisa
2012

Abstract

Abstract Type 1 insulin-dependent diabetes (T1D) which afflicts 0.03-0.04% of population is caused by autoimmune destruction of insulin-secreting beta cells, leading to an insulin deficiency (Gepts, 1965). It is considered a chronic disease with a strong social impact because of high prevalence of late-onset complications and the young age of affected patients being the most frequent chronic disease in children younger than 14-years old. Until now there are no possibilities to cure it and insulin treatment is only a life-long replacement therapy. Tolerance induction through autoantigen administration is one of the strategies useful to prevent or to slow down autoimmune diseases (Harrison, 2005). In particular, for T1D GAD65 has been evaluated as a good candidate vaccine and different Antigen-Specific Immunotherapy (ASI) studies using this autoantigen have been done to test its efficacy in tolerance induction. Results obtained in the non-obese diabetic (NOD) mouse models indicate the potential of GAD65 administration to provide a preventive treatment for diabetes. Recently, Diamyd Medical, a Swedish company, has conducted phase II and phase III clinical trials in humans: in the first case it was demonstrated that two subcutaneous injections of 20µg of alum-formulated GAD65 can reverse the progress of recent-onset T1D in 10 to 18-years-old patients and give protection against it (Ludvigsson et al., 2008), while phase III trials failed. New clinical studies have been proposed including new challenges in timing, different types of therapies and new administration routes. Current proposals include preventive therapies in high-risk individuals (current Phase II trial), combination therapies exploiting the combination of Non-Antigen Specific Immunotherapy (NASI) through an immunosoppressor, together with Antigen-Specific Immunotherapy (ASI), using for example GAD65, and ASI using multiple autoantigens (Lernmark and Larsson, 2011; Larsson and Lernmark, 2011). In addition the route of administration needs further studies, such as oral tolerance induction through GAD65, as it has been done using oral insulin. At present, human GAD65 production is a central point for planning future T1D prevention strategies because of the undergoing and future trials using different vaccine preparations based on T1D autoantigens. Until now human GAD65 (hGAD65) has been obtained from different homologous and heterologous platforms. However, actual production platforms are too expensive and unable to provide sufficient quantity of this autoantigen to meet demand for immunotherapy treatments. Both forms of human GAD65, hGAD65 and hGAD65mut, are expressed in E.coli heterologous system to sort out if they are both accumulated as insoluble proteins, as previously described for human GAD65 (Mauch L. et al., 1993), and if hGAD65mut yield is higher than that of the wild type form of the enzyme, as previously reported in Nicotiana tabacum var. Sr1 plants (Avesani L. et al., 2010). They demonstrated to be both accumulated as insoluble inclusion bodies and were solubilized by the use of denaturing concentration of urea. Western and radioimmunoassay analyses demonstrated that hGAD65mut accumulated at higher levels than hGAD65. Plant-based systems may offer advantages in terms of economy and scalability for the large-scale production of therapeutic proteins in high demand (Ma J.C.K. et al., 2005 a, b; Barasan and Rodriguez-Cerezo, 2008). Thus, the principal aim of the PhD project is the evaluation of plant-based platform feasibility for human GAD65 production. Human GAD65 has previously been expressed in transgenic tobacco plants but yields were disappointing (maximum 0.25% of total soluble protein, TSP) (Porceddu et al., 1999; Ma S. et al., 2004; Wang et al., 2008; Avesani L. et al., 2003). In a recent study, a mutated catalytically-inactive form of human GAD65 (hGAD65mut) was expressed in transgenic Nicotiana tabacum var. Sr1 plants. hGAD65mut-highest expressing plants accumulated 10-fold (2.2% TSP) higher levels of recombinant protein than hGAD65-highest expressing plants (Avesani L. et al., 2010). This plant platform production system needs to be characterized thoroughly in order to verify the hypothesis by which the catalytic properties of native hGAD65 could contribute to its poor yields. Since in previous studies it has been demonstrated in vitro the lack of the enzymatic activity for hGAD65mut, an enzymatic assay in vivo is performed in order to demonstrated the absence of enzymatic activity of the mutated form of GAD65 also in the heterologous plant-based system. Results of the assay are discussed. An additional plant-based platform is tested for the production of both forms of human GAD65. In fact, being Nicotiana tabacum var. Maryland mammoth a higher leaf biomass producing variety than the most widely used one, Sr1, it can be, potentially, an excellent candidate for the production of recombinant pharmaceutical proteins with a large demand. Both forms of human GAD65, hGAD65 and hGAD65mut, are expressed in this plant-based platform, demonstrating that also in this system hGAD65mut yield is higher than that of the wild type form of the enzyme, as previously already described in Nicotiana tabacum var. Sr1 plants (Avesani L. et al., 2010). 1% TSP yield is usually regarded as the minimum required to make the extraction of a plant-derived pharmaceutical protein economically feasible (Ma J.K.C. et al., 2003). Since this threshold was exceeded in the first generation of hGAD65mut-transgenic Nicotiana tabacum var. Sr1 plants, a protocol for downstream processing of the recombinant protein from plant systems was investigated. Results obtained during the set up of the extraction and purification protocol are discussed.
2012
Inglese
Molecular farming; Diabetes; human GAD65; Nicotiana tabacum
222
File in questo prodotto:
File Dimensione Formato  
PhD thesis Gecchele.pdf

accesso solo da BNCF e BNCR

Dimensione 4.76 MB
Formato Adobe PDF
4.76 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/182781
Il codice NBN di questa tesi è URN:NBN:IT:UNIVR-182781