The use of a driving simulator for vehicle development is a current topic in both research and industry, bridging the gap between pure simulation and the feeling and feedback a driver may experience, even before a physical prototype is available. System integration refers to the process of combining and coordinating various components, systems, and technologies to create a cohesive and functional driver-in-the-loop simulation environment. This integration involves aligning hardware and software elements to work together seamlessly, allowing the driving simulator to accurately replicate real-world driving scenarios in accordance with a reliable vehicle model. This work is based on virtual vehicle modelling focusing mainly on suspension, considering both kinematics and elasto-kinematics. Algorithms and models are proposed that allow both the design and analysis of these subsystems, and the integration with real-time simulation. Software with a graphic interface is developed for the suspension kinematic analysis, 3DSusp. Comprehensive models are proposed for calculating the loads on the suspension and for assessing its compliance characterised by rubber bushings with strictly non-linear characteristics. Methods and models concerning vehicle dynamics are also presented, focusing on LSD differential modelling and estimation algorithms for the side slip angle and their integration with the driving simulator. A comparison of two methods for estimating the side slip angle is presented, one based on artificial neural networks, and one based on the Kalman filter. Finally, the possibility of extending simulations for the development of ADAS systems through ViWorldSim® is also explored. Methods for hardware integration such as tactile pads and dashboards are also explored in this work. The development environments used for integration with the driving simulator are mainly Matlab Simulink® and ViCarRealTime®. Online tests are conducted using the Vi-Grade driving simulator available at the University of Brescia.
L'uso del simulatore di guida per lo sviluppo di veicoli è un argomento attuale sia nella ricerca che nell'industria, colmando il divario tra la mera simulazione e le sensazioni e i feedback che un guidatore può sperimentare, anche prima che sia disponibile un prototipo fisico. Per System Integration, si fa riferimento al processo di combinazione e coordinamento di vari componenti, sistemi e tecnologie per creare un ambiente di simulazione driver-in-the-loop coeso e funzionale. Questa integrazione implica l'allineamento di elementi hardware e software, consentendo al simulatore di guida di replicare accuratamente scenari di guida reali in conformità con un modello veicolare affidabile. Questo lavoro si basa sulla modellazione virtuale del veicolo con un focus principale sulle sospensioni, considerando sia la cinematica che l'elasto-cinematica. Vengono proposti algoritmi e modelli che consentono sia la progettazione che l'analisi di questi sottosistemi, nonché l'integrazione con la simulazione in tempo reale. È stato sviluppato un software con interfaccia grafica, 3DSusp, per l'analisi cinematica delle sospensioni. Sono proposti modelli completi per il calcolo dei carichi sulla sospensione e per la valutazione delle cedevolezze, caratterizzate principalmente dalle boccole in gomma con proprietà rigorosamente non lineari. Vengono inoltre presentati metodi e modelli riguardanti la dinamica del veicolo, con particolare attenzione alla modellazione del differenziale LSD e agli algoritmi di stima per l'angolo di assetto e la loro integrazione con il simulatore di guida. Viene fornito un confronto tra due metodi per stimare l'angolo di assetto: uno basato su reti neurali artificiali e l'altro basato sul filtro di Kalman. Infine, viene esplorata la possibilità di estendere le simulazioni per lo sviluppo di sistemi ADAS utilizzando ViWorldSim®. In questo lavoro vengono inoltre esaminati metodi di integrazione hardware, come pad tattili e dashboard.Gli ambienti di sviluppo utilizzati per l'integrazione con il simulatore di guida sono principalmente Matlab Simulink® e ViCarRealTime®. I test online sono stati effettuati utilizzando il simulatore di guida Vi-Grade disponibile presso l'Università di Brescia.
Research of Innovative methodologies for the System Integration of vehicles through driving simulator
MAGRI, PAOLO
2024
Abstract
The use of a driving simulator for vehicle development is a current topic in both research and industry, bridging the gap between pure simulation and the feeling and feedback a driver may experience, even before a physical prototype is available. System integration refers to the process of combining and coordinating various components, systems, and technologies to create a cohesive and functional driver-in-the-loop simulation environment. This integration involves aligning hardware and software elements to work together seamlessly, allowing the driving simulator to accurately replicate real-world driving scenarios in accordance with a reliable vehicle model. This work is based on virtual vehicle modelling focusing mainly on suspension, considering both kinematics and elasto-kinematics. Algorithms and models are proposed that allow both the design and analysis of these subsystems, and the integration with real-time simulation. Software with a graphic interface is developed for the suspension kinematic analysis, 3DSusp. Comprehensive models are proposed for calculating the loads on the suspension and for assessing its compliance characterised by rubber bushings with strictly non-linear characteristics. Methods and models concerning vehicle dynamics are also presented, focusing on LSD differential modelling and estimation algorithms for the side slip angle and their integration with the driving simulator. A comparison of two methods for estimating the side slip angle is presented, one based on artificial neural networks, and one based on the Kalman filter. Finally, the possibility of extending simulations for the development of ADAS systems through ViWorldSim® is also explored. Methods for hardware integration such as tactile pads and dashboards are also explored in this work. The development environments used for integration with the driving simulator are mainly Matlab Simulink® and ViCarRealTime®. Online tests are conducted using the Vi-Grade driving simulator available at the University of Brescia.File | Dimensione | Formato | |
---|---|---|---|
Tesi PhD Paolo Magri.pdf
accesso aperto
Dimensione
10.53 MB
Formato
Adobe PDF
|
10.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/184490
URN:NBN:IT:UNIBS-184490