In recent years, additive manufacturing techniques have experienced rapid development and have progressively integrated into various industrial sectors to produce components with complex geometries, difficult to realize through the conventional subtractive manufacturing techniques. In particular, these processes have garnered significant interest in the biomedical field due to the possibility to produce customized implants based on patient needs. In this sector, one of the materials of interest is Nitinol (NiTi), a near-equiatomic alloy of nickel and titanium that constitutes the most widespread shape memory metallic material. Currently, conventionally produced NiTi is widely used for fabricating biomedical components, especially endovascular devices, owing to its high biocompatibility and corrosion resistance combined to its unique shape memory and superelastic properties. Additive manufacturing of NiTi biomedical devices is very promising thanks to the advantages involved, however, its realization is still hindered by the complex nature of such processes and the lack of an exhaustive characterization of the properties of the material thus produced. NiTi is a material whose properties are highly sensitive to various factors, such as chemical composition, mechanical processing, and heat treatments, which are commonly performed to enhance the functional properties of the alloy. Consequently, each production step, together with the parameters involved, significantly impacts on the final features of the component. This necessitates considerable efforts and in-depth studies in developing new production processes. In particular, the tuning of heat treatments to achieve the desired properties is an essential and sensitive step, requiring a case-by-case examination. In this context, the present work aims at characterizing the effects of different heat treatments on NiTi alloys produced through laser powder bed fusion (L-PBF), with the objective to enhance their properties through microstructural modifications. The first two sections of this work provide theoretical insights on L-PBF and NiTi, mainly focusing on the description of its functional properties (shape memory and superelasticity), microstructural characteristics, and production methods. The subsequent two sections present the experimental activities conducted. In the third section, the influence of direct aging heat treatments on the superelastic properties of NiTi was analyzed through cyclic compression tests conducted at various temperatures. To date, direct aging after L-PBF is still an unexplored practice for NiTi. However, its implementation would contribute to make the production through additive manufacturing more attractive due to the notable savings of energy and cost resulting from the absence of the solution treatment phase. The multiple tests conducted allowed the obtainment of a temperature-stress diagram for the use of the alloy, exhaustively characterizing its behavior. In addition, the samples subjected to the innovative direct aging treatments proposed were analyzed through transmission electron microscopy. The fourth section addresses the effects of heat treatments on the modification of the transformation temperatures, aiming to restore a microstructure suitable for superelasticity after nickel evaporation during the process. One of the main challenges in producing NiTi through additive manufacturing is in fact the nickel evaporation, resulting from the high temperatures reached due to the laser action. This leads to numerous complications in managing the process and controlling the component properties, which can significantly differ even with a small variation in the nickel content.
Negli ultimi anni, le tecniche di manifattura additiva hanno visto un rapido sviluppo e si sono inserite in diversi ambiti industriali per la produzione di componenti con geometrie complesse, difficilmente realizzabili tramite le convenzionali tecniche di produzione sottrattive. In particolare, questi processi hanno suscitato notevole interesse nel biomedicale grazie alla possibilità di produrre impianti personalizzati sulla base delle necessità del paziente. Tra i materiali di interesse in questo settore vi è il Nitinol (NiTi), una lega di nichel e titanio che costituisce il materiale metallico a memoria di forma più diffuso. Attualmente, il NiTi prodotto tramite tecniche convenzionali è largamente utilizzato per la fabbricazione di componenti biomedicali, in particolare per dispositivi endovascolari, grazie all’elevata biocompatibilità e resistenza a corrosione unite alle sue proprietà di memoria di forma e superelasticità. La fabbricazione additiva di dispositivi biomedicali in NiTi è molto promettente grazie ai benefici che offre. Tuttavia, la sua realizzazione è ancora ostacolata dalla complessa natura di tali processi e dalla mancanza di una caratterizzazione esaustiva delle proprietà del materiale così prodotto. Il NiTi è infatti un materiale le cui proprietà sono sensibili a svariati fattori, quali la composizione chimica o le lavorazioni meccaniche e i trattamenti termici subiti, che sono comunemente effettuati per migliorare le proprietà funzionali della lega. Di conseguenza, ogni step di produzione, nonché i parametri coinvolti, ha un impatto significativo sulle caratteristiche finali. Ciò richiede studi approfonditi nello sviluppo di nuovi iter di produzione. In particolare, la messa a punto di trattamenti termici per il raggiungimento delle proprietà desiderate è uno step essenziale e delicato, che richiede di essere esaminato caso per caso. In questo contesto, il presente lavoro ha l’obiettivo di caratterizzare l’effetto di diversi trattamenti termici su leghe NiTi prodotte tramite fusione laser a letto di polvere, al fine di migliorarne le proprietà attraverso modifiche microstrutturali. Le prime due sezioni del lavoro introducono teoricamente al processo considerato e al NiTi, riferendosi principalmente alla descrizione delle sue proprietà funzionali (memoria di forma e superelasticità), caratteristiche microstrutturali e metodi di produzione. Le successive due sezioni riguardano l’attività sperimentale svolta. Nella terza sezione sono stati investigati trattamenti termici di invecchiamento diretto sulle proprietà superelastiche del NiTi, attraverso prove di compressione cicliche condotte a varie temperature. Ad oggi, l’invecchiamento diretto dopo fusione laser a letto di polvere è una pratica poco esplorata per il NiTi. Tuttavia, la sua implementazione contribuirebbe a rendere l’iter di produzione più attrattivo a causa del risparmio energetico e di costi dovuti all’assenza della solubilizzazione. Le molteplici prove effettuate hanno consentito di ricavare una mappa temperatura-sforzo di utilizzo del materiale, caratterizzandone esaustivamente comportamento. I campioni sottoposti ai trattamenti di invecchiamento diretto sono stati inoltre analizzati tramite microscopia elettronica a trasmissione. La quarta sezione esamina l’effetto dei trattamenti termici sulla modifica delle temperature di trasformazione, con l’obiettivo di ripristinare una microstruttura adatta per l’ottenimento della superelasticità a seguito dell’evaporazione del nichel durante il processo. Una delle principali problematiche che caratterizza la produzione di NiTi tramite manifattura additiva è infatti l’evaporazione del nichel. Ciò comporta numerose complicazioni sia nella gestione del processo che nel controllo delle proprietà del componente, le quali possono differire in modo considerevole anche solo con una piccola variazione del contenuto di nichel.
Characterization of Nitinol alloy produced by laser powder bed fusion for biomedical applications
ABRAMI, Maria-beatrice
2024
Abstract
In recent years, additive manufacturing techniques have experienced rapid development and have progressively integrated into various industrial sectors to produce components with complex geometries, difficult to realize through the conventional subtractive manufacturing techniques. In particular, these processes have garnered significant interest in the biomedical field due to the possibility to produce customized implants based on patient needs. In this sector, one of the materials of interest is Nitinol (NiTi), a near-equiatomic alloy of nickel and titanium that constitutes the most widespread shape memory metallic material. Currently, conventionally produced NiTi is widely used for fabricating biomedical components, especially endovascular devices, owing to its high biocompatibility and corrosion resistance combined to its unique shape memory and superelastic properties. Additive manufacturing of NiTi biomedical devices is very promising thanks to the advantages involved, however, its realization is still hindered by the complex nature of such processes and the lack of an exhaustive characterization of the properties of the material thus produced. NiTi is a material whose properties are highly sensitive to various factors, such as chemical composition, mechanical processing, and heat treatments, which are commonly performed to enhance the functional properties of the alloy. Consequently, each production step, together with the parameters involved, significantly impacts on the final features of the component. This necessitates considerable efforts and in-depth studies in developing new production processes. In particular, the tuning of heat treatments to achieve the desired properties is an essential and sensitive step, requiring a case-by-case examination. In this context, the present work aims at characterizing the effects of different heat treatments on NiTi alloys produced through laser powder bed fusion (L-PBF), with the objective to enhance their properties through microstructural modifications. The first two sections of this work provide theoretical insights on L-PBF and NiTi, mainly focusing on the description of its functional properties (shape memory and superelasticity), microstructural characteristics, and production methods. The subsequent two sections present the experimental activities conducted. In the third section, the influence of direct aging heat treatments on the superelastic properties of NiTi was analyzed through cyclic compression tests conducted at various temperatures. To date, direct aging after L-PBF is still an unexplored practice for NiTi. However, its implementation would contribute to make the production through additive manufacturing more attractive due to the notable savings of energy and cost resulting from the absence of the solution treatment phase. The multiple tests conducted allowed the obtainment of a temperature-stress diagram for the use of the alloy, exhaustively characterizing its behavior. In addition, the samples subjected to the innovative direct aging treatments proposed were analyzed through transmission electron microscopy. The fourth section addresses the effects of heat treatments on the modification of the transformation temperatures, aiming to restore a microstructure suitable for superelasticity after nickel evaporation during the process. One of the main challenges in producing NiTi through additive manufacturing is in fact the nickel evaporation, resulting from the high temperatures reached due to the laser action. This leads to numerous complications in managing the process and controlling the component properties, which can significantly differ even with a small variation in the nickel content.File | Dimensione | Formato | |
---|---|---|---|
PhD Tesi Abrami.pdf
accesso aperto
Dimensione
17.1 MB
Formato
Adobe PDF
|
17.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/184491
URN:NBN:IT:UNIBS-184491