The disinfection of the water used in swimming facilities is based on chlorine adminis- tration to contrast pollutants and pathogens released by bathers. The chemical reaction between chlorine and organic matter causes the formation of a family of compounds, which are commonly referred to as disinfection by-products (DBPs). They can spon- taneously migrate from water to air. It was proved that prolonged exposure to them provokes the onset of health problems which have become real occupational diseases af- fecting professional swimmers and the facility staff. Therefore, their removal is needed. The methods from the up-to-date state of the art are characterized by relevant limita- tions. This led to the development of the technology described in this thesis. The gutter that surrounds the perimeter of a swimming pool to collect its water was modified by adding porous pipes to bubble air. Bubbles strip the volatile chemicals from the water and release them into the air above the free surface, from there they are removed by a suction conduit. The development of this project covers different research areas, among which are the bubble generation from porous pipes, their motion through the body of water, the water-air mass exchange, and the hydraulics of the gutter equipped for stripping. Chapter 2 describes the characterization of the porous pipes. Bubbles were sampled both at specific locations along the pipe cross-circumference and globally to describe the effect of the porous surface orientation and air flow rate on their dimensions and generation rate. The extension of the Koide equation to porous pipes and to the Sauter mean diameter is commented on. The Forrcheimer model is successfully applied to describe the air flow through the pipe porous material. Bubble motion is the object of chapter 3. The measurements of the local air volume fraction and the global hold-up are described. A new method is introduced to process the signal of the volume fraction probe. A new model for the hold-up is formulated based on the forces to which the bubbles are subjected. Its validation is carried out using results from the literature. The close describes the CFD simulations performed to validate the hold-up model and the method for the air volume fraction determination. Chapter 5 assesses the hydraulics of the channel and the probabilistic distribution of water residence time in it. A focus was placed on the application of the St. Venant equations as a simpler alternative to CFD simulations. Secondly, a new transport model for the channel is presented. Mass exchange is dealt with in chapter 4. The performed experiments are explained and their results are interpreted in the light of those available in the literature. The chapter closes with the choice of a model that applies to the present case. Conclusions and future developments are presented in chapter 6.
La disinfezione dell’acqua usata negli impianti natatori richiede il dosaggio di cloro al fine di contrastare gli organismi patogeni e le sostanze inquinanti rilasciate dai bagnanti. La reazione tra il cloro e le sostanze organiche causa la formazione di una famiglia di prodotti, nota come sottoprodotti di disinfezione, in grado di migrare spontaneamente dall’aria all’acqua. E’ stato dimostrato che l’esposizione prolungata ad esse causa problemi alla salute che sono diventati vere e proprie malattie professionali a carico di nuotatori professionisti e del personale degli impianti. Per questo motivo, è necessario rimuoverle. Le tecniche formanti lo stato dell’arte sono caratterizzate da varie limitazioni, motivo per cui si è deciso di sviluppare la tecnologia presentata in questa tesi. Il canale che circonda il perimetro di una piscina per raccogliere l’acqua proveniente da essa è stato modificato aggiungendo dei tubi porosi per insufflare aria sotto forma di bolle. Le bolle strippano le sostanze volatili disciolte nell’acqua e le rilasciano sopra la sua superficie libera, dove sono aspirate da un condotto di aspirazione. Lo sviluppo di questo progetto integra diverse aree di ricerca, in particolare la generazione delle bolle mediante tubi porosi, il loro moto attraverso il corpo d’acqua, lo scambio di massa acqua-aria e il funzionamento idraulico del canale attrezzato per lo strippaggio. Il capitolo 2 descrive la caratterizzazione dei tubi porosi. Le bolle sono state campionate sia a livello globale, sia a quello locale per descrivere gli effetti della giacitura della superficie porosa e della portata d’aria sulla dimensione delle bolle e sul tasso di generazione. E’ commentata l’estensione ai tubi porosi e al diametro medio di Sauter dell’equazione di Koide. Il modello di Forchheimer è applicato con successo per la descrizione del flusso attraverso il materiale poroso del tubo. Il moto delle bolle è l’oggetto del capitolo 3. Sono descritte le misure locali di concentrazione dell’aria e dell’hold-up a livello globale. E’ presentato un nuovo metodo per processare il segnale della sonda per la misura della concentrazione locale di aria. Un nuovo modello per spiegare la formazione dell’hold-up basato sulle forze agenti sulle bolle è formulato e validato alla luce di lavori disponibili in letteratura. In chiusura sono mostrate le simulazioni CFD realizzate per confermare il modello dell’hold-up e il nuovo metodo di determinazione della concentrazione locale di aria. Il capitolo 5 investiga il funzionamento idraulico del canale e la distrubuzione probabilistica del tempo di permanenza dell’acqua in esso. Ci si è concentrati in modo particolare sull’applicabilità delle equazioni di de Saint-Venant come strumento di modellazione semplificato alternativo alle simulazioni CFD. In secondo luogo, è illustrato un nuovo modello di trasporto per il canale principale. Lo scambio di massa è affrontato nel capitolo 4. Sono mostrati gli esperimenti condotti e i risultati sono interpretati sulla base di quelli disponibili in letteratura. Il capitolo si chiude con la scelta di un modello per lo scambio di massa applicabile al presente caso. Le conclusioni e gli sviluppi futuri formano il capitolo 6.
DEVELOPMENT OF A TECHNOLOGY FOR THE REMOVAL OF VOLATILE DBPs FROM THE ENVIRONMENT OF A SWIMMING FACILITY
COLETTO, ANDREA
2025
Abstract
The disinfection of the water used in swimming facilities is based on chlorine adminis- tration to contrast pollutants and pathogens released by bathers. The chemical reaction between chlorine and organic matter causes the formation of a family of compounds, which are commonly referred to as disinfection by-products (DBPs). They can spon- taneously migrate from water to air. It was proved that prolonged exposure to them provokes the onset of health problems which have become real occupational diseases af- fecting professional swimmers and the facility staff. Therefore, their removal is needed. The methods from the up-to-date state of the art are characterized by relevant limita- tions. This led to the development of the technology described in this thesis. The gutter that surrounds the perimeter of a swimming pool to collect its water was modified by adding porous pipes to bubble air. Bubbles strip the volatile chemicals from the water and release them into the air above the free surface, from there they are removed by a suction conduit. The development of this project covers different research areas, among which are the bubble generation from porous pipes, their motion through the body of water, the water-air mass exchange, and the hydraulics of the gutter equipped for stripping. Chapter 2 describes the characterization of the porous pipes. Bubbles were sampled both at specific locations along the pipe cross-circumference and globally to describe the effect of the porous surface orientation and air flow rate on their dimensions and generation rate. The extension of the Koide equation to porous pipes and to the Sauter mean diameter is commented on. The Forrcheimer model is successfully applied to describe the air flow through the pipe porous material. Bubble motion is the object of chapter 3. The measurements of the local air volume fraction and the global hold-up are described. A new method is introduced to process the signal of the volume fraction probe. A new model for the hold-up is formulated based on the forces to which the bubbles are subjected. Its validation is carried out using results from the literature. The close describes the CFD simulations performed to validate the hold-up model and the method for the air volume fraction determination. Chapter 5 assesses the hydraulics of the channel and the probabilistic distribution of water residence time in it. A focus was placed on the application of the St. Venant equations as a simpler alternative to CFD simulations. Secondly, a new transport model for the channel is presented. Mass exchange is dealt with in chapter 4. The performed experiments are explained and their results are interpreted in the light of those available in the literature. The chapter closes with the choice of a model that applies to the present case. Conclusions and future developments are presented in chapter 6.File | Dimensione | Formato | |
---|---|---|---|
tesi andrea coletto con embargo.pdf
embargo fino al 07/07/2025
Dimensione
22.57 MB
Formato
Adobe PDF
|
22.57 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/188177
URN:NBN:IT:UNIBS-188177