In the current global context, where it is essential to comply with greenhouse gas emission limits to avoid surpassing the increase in average global temperature, renewable energy sources must replace traditional fossil fuels in the production of both electrical and thermal energy across various sectors, including industry. The inherent unpredictability of renewable energy sources makes it challenging to align energy production with real-time demand. For this reason, the introduction of energy storage systems is crucial, as they play a key role in balancing supply and demand. These systems allow for the storage of excess energy produced during periods of low demand, which can then be released when demand is higher, ensuring a more stable and reliable energy system. In the various sectors where energy is required, numerous solutions are being proposed for energy storage technology. This doctoral thesis focuses on thermal energy storage systems for steam supply in industrial applications. Specifically, two types of storage systems based on fluidized sand beds will be presented: one charged directly by solar energy and the other by electrical energy. Both systems were designed and patented by Magaldi Power S.p.A. and are named STEM® (Solar Thermo-Electric Magaldi) and MGTES (Magaldi Green Thermal Energy Storage), respectively. For the STEM® technology, which uses solar energy for charging, two innovative aspects stand out: an advanced algorithm for the integral correction of heliostat (solar tracking mirrors) aiming errors, which improves aiming accuracy and consequently increases the amount of solar energy collected in the fluidized bed; and the use of a biaxial inclinometer for each heliostat, which helps to reduce aiming errors caused by ground misalignments, thus improving system reliability. For the MGTES technology, which utilizes electric resistances to charge thermally through Joule heating, a study was conducted to identify the most suitable heating system for the fluidized bed of sand particles. Simulations were carried out based on analytical models, comparing resistive elements designed to heat through conduction, convection, and radiation. Following the simulation phase, an experimental testing campaign was conducted to validate the results of the theoretical models, verifying the accuracy of the simulations and the actual performance of the heating systems studied. To identify the most promising heating method, a qualitative analysis was performed alongside the quantitative assessment, aimed at evaluating critical factors relevant to the industrialization of technology. Key considerations included ease of installation, maintenance requirements, component replaceability, and compatibility of the technology with the storage medium. A strengths, weakness, opportunities, and threats analysis was conducted, encompassing the primary qualitative factors mentioned. The resulting matrices were then structured to systematically evaluate these aspects. In the proposed scenario, where thermal storage systems are integrated within energy districts, a novel controlled microgrid concept becomes essential. In this framework, both electrical and thermal storage systems require optimal management. An effective Energy Management System (EMS) is critical to the efficient utilization of distributed energy resources. Considering these requirements, research has been initiated to develop an EMS model aimed at optimizing power flows to reduce both energy costs and CO₂ emissions. This topic will form the core of future research efforts.
Nello scenario mondiale attuale dove si rende necessario rispettare i limiti di emissione di gas serra per non valicare l’incremento della temperatura media globale, le fonti di energia rinnovabile dovranno sostituire i tradizionali combustibili fossili nella produzione di energia elettrica e termica nei vari settori incluso quello industriale. La non programmabilità intrinseca delle fonti di energia rinnovabili rende difficile far coincidere l’energia prodotta con la domanda in tempo reale. Per questo motivo, l’introduzione di sistemi di accumulo di energia è fondamentale, in quanto svolgono un ruolo chiave nel bilanciare la domanda e l’offerta. Questi sistemi consentono di immagazzinare l’energia in eccesso prodotta durante i periodi di bassa domanda, che può poi essere rilasciata quando la domanda è più alta, garantendo così un sistema energetico più stabile ed affidabile. Nei vari settori dove si necessità di energia, sono svariate le soluzioni che si propongono come tecnologia di accumulo. In questo lavoro di tesi di dottorato ci si focalizza sui sistemi di accumulo termico per la fornitura di vapore nel comparto industriale. In particolare, si presenteranno due tipi di sistemi di accumulo basati su letto fluidizzato di sabbia uno a carica solare diretta l’altro a carica elettrica. Entrambi i sistemi sono stati ideati e brevettati dalla Magaldi Power S.p.A. e denominati rispettivamente STEM® (Solar Thermo-Electric Magaldi) ed MGTES (Magaldi Green Thermal Energy Storage). Per la tecnologia STEM®, per cui si prevede la carica solare, sono due gli aspetti innovativi da evidenziare: un algoritmo innovativo che prevede la correzione integrale degli errori di puntamento degli eliostati (specchi inseguitori solari) garantendo una maggiore efficienza di puntamento e quindi un incremento dell’energia solare raccolta all’interno dello letto fluido; l’utilizzo di un inclinometro biassiale per ogni eliostato, per aumentare la reiezione degli errori di puntamento dovuti a disallineamenti del terreno, migliorando così l’affidabilità del sistema. Per la tecnologia MGTES, che prevede una carica termica mediante resistenze elettriche per effetto Joule, è stato realizzato uno studio per l’individuazione del sistema di riscaldamento più adatto al letto fluidizzato di particelle di sabbia. Sono state condotte simulazioni basate su modelli analitici confrontando elementi resistivi progettati per riscaldare attraverso conduzione, convezione e irraggiamento. Dopo la fase di simulazione, è stata realizzata una campagna di prove sperimentali per validare i risultati ottenuti dai modelli teorici, verificando l’accuratezza delle simulazioni e il comportamento reale dei sistemi di riscaldamento studiati. Per identificare il metodo di riscaldamento più promettente, accanto alla valutazione quantitativa è stata eseguita un'analisi qualitativa, volta a valutare i fattori critici rilevanti per l'industrializzazione della tecnologia. Le considerazioni principali hanno riguardato la facilità di installazione, i requisiti di manutenzione, la sostituibilità dei componenti e la compatibilità della tecnologia con il mezzo di accumulo. È stata condotta un'analisi dei punti di forza, debolezza, opportunità e minacce, che comprendeva i principali fattori qualitativi menzionati. Le matrici risultanti sono state poi state strutturate per valutare sistematicamente questi aspetti. Nello scenario proposto, in cui i sistemi di accumulo termici sono integrati nei distretti energetici, diventa essenziale un nuovo concetto di microgrid controllata. In questo contesto, sia i sistemi elettrici che quelli di accumulo termico richiedono una gestione ottimale. Un efficace Energy Management System (EMS) è fondamentale per l'utilizzo efficiente delle risorse energetiche distribuite. Tenendo conto di questi requisiti, è stata avviata una ricerca per sviluppare un modello di EMS volto ad ottimizzare i flussi di potenza per ridurre sia i costi energetici sia le emissioni di CO₂. Questo argomento costituirà il fulcro dei futuri sforzi di ricerca.
Thermal Energy Storage integration in electrical grids and in energy industries for decarbonization
SCAFURI, ANTONIO
2025
Abstract
In the current global context, where it is essential to comply with greenhouse gas emission limits to avoid surpassing the increase in average global temperature, renewable energy sources must replace traditional fossil fuels in the production of both electrical and thermal energy across various sectors, including industry. The inherent unpredictability of renewable energy sources makes it challenging to align energy production with real-time demand. For this reason, the introduction of energy storage systems is crucial, as they play a key role in balancing supply and demand. These systems allow for the storage of excess energy produced during periods of low demand, which can then be released when demand is higher, ensuring a more stable and reliable energy system. In the various sectors where energy is required, numerous solutions are being proposed for energy storage technology. This doctoral thesis focuses on thermal energy storage systems for steam supply in industrial applications. Specifically, two types of storage systems based on fluidized sand beds will be presented: one charged directly by solar energy and the other by electrical energy. Both systems were designed and patented by Magaldi Power S.p.A. and are named STEM® (Solar Thermo-Electric Magaldi) and MGTES (Magaldi Green Thermal Energy Storage), respectively. For the STEM® technology, which uses solar energy for charging, two innovative aspects stand out: an advanced algorithm for the integral correction of heliostat (solar tracking mirrors) aiming errors, which improves aiming accuracy and consequently increases the amount of solar energy collected in the fluidized bed; and the use of a biaxial inclinometer for each heliostat, which helps to reduce aiming errors caused by ground misalignments, thus improving system reliability. For the MGTES technology, which utilizes electric resistances to charge thermally through Joule heating, a study was conducted to identify the most suitable heating system for the fluidized bed of sand particles. Simulations were carried out based on analytical models, comparing resistive elements designed to heat through conduction, convection, and radiation. Following the simulation phase, an experimental testing campaign was conducted to validate the results of the theoretical models, verifying the accuracy of the simulations and the actual performance of the heating systems studied. To identify the most promising heating method, a qualitative analysis was performed alongside the quantitative assessment, aimed at evaluating critical factors relevant to the industrialization of technology. Key considerations included ease of installation, maintenance requirements, component replaceability, and compatibility of the technology with the storage medium. A strengths, weakness, opportunities, and threats analysis was conducted, encompassing the primary qualitative factors mentioned. The resulting matrices were then structured to systematically evaluate these aspects. In the proposed scenario, where thermal storage systems are integrated within energy districts, a novel controlled microgrid concept becomes essential. In this framework, both electrical and thermal storage systems require optimal management. An effective Energy Management System (EMS) is critical to the efficient utilization of distributed energy resources. Considering these requirements, research has been initiated to develop an EMS model aimed at optimizing power flows to reduce both energy costs and CO₂ emissions. This topic will form the core of future research efforts.File | Dimensione | Formato | |
---|---|---|---|
Tesi_dottorato_Scafuri.pdf
accesso aperto
Dimensione
4.37 MB
Formato
Adobe PDF
|
4.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/188588
URN:NBN:IT:UNIROMA1-188588